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Abstract
To precisely estimate head poses based on RGB images is essential and useful for

many applications, such as understanding the vehicle drivers’ status for driving safety,
and passengers’ action conditions. Recently, due to the impact of the COVID-19 pan-
demic, people are required to wear masks in almost all public places, sometimes even
in a vehicle, but the existing research works on head pose estimation have become more
challenging when the face is occluded. To tackle this issue, we propose a novel siamese
structure network integrating the global-local attention mechanisms with data augmen-
tation and a multi-task learning strategy. Specifically, we initially incorporate data aug-
mentation for synthesizing facial masks on human faces and landmark prediction in the
training stage to help the model be generalized and robust. Next, a global-local attention
mechanism is designed so that the relationship in whole feature maps can be learned and
the critical spatial-channel information can be enhanced to obtain a better feature repre-
sentation. Lastly, the feature interpolation regularization module utilizes pairs of feature
embedding from the siamese network to optimize the feature embedding. To validate
our proposed work, the proposed method is evaluated on AFLW2000, BIWI, and MAFA
datasets. Extensive experiments show that our method can achieve highly promising
performance on those public datasets.

1 Introduction
In recent years, head pose estimation task have received more attention in computer vision
community. This task aims to predict the three-dimensional angular information (yaw, pitch,
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and roll) of human faces from images or videos. It is essential and useful to accurately
estimate head poses for many applications, such as identifying vehicle drivers’ status or pas-
sengers’ action condition in human-vehicle interaction [22] systems, so that some necessary
warming or assisting measures can be issued for driving safety or enjoyable ride. Instead of
using depth images to implement the head pose estimation, the work using RGB images is
more valuable since RGB images are easier to obtain and can easily be applied to real-world
applications. The research works [5, 23, 27, 30] based on deep convolutional neural network
using RGB images lately have made significant progress.

However, the facial mask occlusion situation for head pose estimation is still one of the
challenging problems in real-world conditions. There are two reasons why the previous
research works perform worse under those situations. Firstly, they did not design the specific
modules in the model architecture to discriminate useful information from RGB images.
Secondly, the existing datasets [7, 31] have fewer cases with mask occlusion, so the the
data-driven model can not learn the better feature representation to predict the accurate head
pose.

Considering the above issues, we propose the Global-Local Attention network with the
siamese structure for head pose estimation. The main contribution of this paper are summa-
rized as follows:

• In this paper, we introduce a network with the global-local attention mechanism and
the multi-task learning strategy trained on the synthesized facial mask images and
non-facial mask images to learn the discriminative and useful information.

• We propose the feature interpolation regularization module in the siamese network
structure to optimize the embedded features generated from pairs of feature embed-
ding.

• Extensive experiments show that our proposed method have achieved competitive per-
formance compared to state-of-the-art methods on public datasets.

2 Related Work
In this section, we introduce the landmark-based methods, landmark-free methods and rota-
tion representation for head pose estimation. Moreover, we present the attention mechanisms
that are widely applied to computer vision.

Landmark-based methods: In these approaches, 2D facial landmarks are predicted first
and then utilized for estimating head poses. The simple method in 3D vision technique is to
solve the correspondence between 2D facial landmarks predicted by existing landmark de-
tector [1, 15] and 3D head model through Perspective-n-Point (PnP) [8] algorithm. However,
it highly depends on the generic head model and the accuracy of facial landmarks. Moreover,
those results are generated independently and obtained suboptimal solutions. Therefore, ap-
proaches such as KEPLER [17] refines the facial landmarks iteratively by cascade regressor
and predicts head pose as well. 3DDFA_V2 [10] optimizes the network for regression task
of predicting 3DMM parameters including rotation information. OsGG [21] proposes the
end-to-end model combining the Convolutional Neural Network (CNN) and Graph Convo-
lutional Network (GCN) to regress 2D facial landmarks and head pose angles.

Landmark-free methods: Landmark-free methods directly predict the head pose with-
out the requirement of the 2D facial landmark information from RGB images. HopeNet [23]
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combines ResNet50 with multi-loss techniques where each angle has binned classification
and regression for its individual loss. FSA-Net [27] is the lightweight model adopting at-
tention mechanisms with the stage-wise regression. WHENet [30] extends the yaw angle to
full 360 degree range with designed loss. FDN [28] proposes a feature decoupling network
which obtains compact and distinct features for each pose angle. Inspired by the success
of Transformer [25] in computer vision, HeadPosr [4] and LwPosr [5] utilize transformer
encoders in the network to predict head pose estimation. Nowadays, landmark-free methods
still outperform landmark-based methods.

Rotation representation: The representation of a rotation in a 3D world can take many
forms. For the head pose estimation task, Euler angle and quaternion are commonly pre-
dicted by deep neural network in [3, 13]. However, both representation have the ambiguity
problem shown in [29]. Additionally, it demonstrates that a continuous representation of ro-
tation in 3D space can be obtained using at least the five-dimensional representation, which
is more suitable for learning. Therefore, research works [2, 12, 20] utilize the rotation matrix
as the rotation representation for model training. TriNet [2] adopts additional orthogonality
loss to regularize the predictions. 6DRepNet [12] uses the geodesic loss to calculate the
distance between two rotation matrices.

Attention mechanism: It is well known that many works have applied attention mech-
anisms to their models to improve performance. SENet [14] is the first attention network
that proposed the channel attention. The later-on CBAM [26] achieves considerable per-
formance improvements while keeping less computational and parameter overhead by gen-
erating channel attention and spatial attention sequentially. However, using convolution to
generate local spatial attention limits the receptive field to the size of the convolution kernel.
The global self-attention module is a component of the Transformer [25] that models long-
range dependencies to generate the attention maps based on the input. Vision Transformer
[6] applies Transformer architecture on many computer vision tasks and achieve impressive
performance. The global self-attention operation is proper for modeling the spatial relation-
ships of the feature map. Previous research works [5, 27, 28] apply attention mechanisms to
the head pose estimation task and obtain promising performance. Therefore, we utilizes an
attention module that can capture the features across the local and global dimensions.

3 Method
In this section, we will introduce a novel deep learning network with global-local attention
mechanisms called GLPose in detail. The overall architecture is described in section 3.1.
In section 3.2, the global-local attention mechanism in GLPose is introduced. The feature
interpolation regularization module is described in section 3.3. The loss function used in
GLPose is shown in section 3.4.

3.1 Overall Architecture
The model architecture with the siamese structure is shown in Figure 1. The proposed net-
work GLPose is ResNet50 [11] integrating global-local attention mechanisms, the facial
landmark detection module as an auxiliary task for predicting the 2D facial landmarks and
the head pose prediction module as a main task for predicting head poses. In the head pose
prediction module, the six-dimensional representation is first predicted, and this representa-
tion is then transformed to the rotation matrix. The detail of the transformation is shown in
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Figure 1: Illustration of the proposed network GLPose with the siamese structure. The net-
work has five components: feature extraction module for low-level features, global-local
attention mechanism for extracting useful information, feature interpolation regularization
module for optimizing the feature embedding, facial landmark detection module for predict-
ing the 2D facial landmarks, and head pose prediction module for predicting head pose.

the supplementary material. In the training stage, pairs RGB images with human faces are
fed into two network branches, which share the network weights. Both generate respective
prediction outputs. Furthermore, the feature embeddings from two branches are fed into the
feature interpolation regularization module for feature embedding optimization. In the refer-
ence stage, the feature interpolation regularization module and the facial landmark detection
module can easily remove and the network can perform the head pose estimation only.

3.2 Global-Local Attention Mechanism
Inspired by [24, 26] and due to the computational complexity of self-attention for large size
of feature maps, we design global-local attention mechanisms which are integrated at the
middle between two residual blocks as shown in Figure 1. The detail of the global-local
attention mechanism is demonstrated in Figure 2. The global-local attention mechanism
consists of two attention modules: local attention and global attention modules. The lo-
cal attention enhances the channel information and spatial information sequentially, and the
global attention models the spatial relationships of whole feature maps.

Local attention modules: Following CBAM [26], given the feature map F∈ RC×H×W

from the backbone, where C indicates the number of channels, and the H×W is the spatial
resolution, after adopting the channel attention module and the spatial attention module, the
refined feature map F l ∈ RC×H×W is obtained.

Global attention modules: The global self-attention mechanism applies on the given
feature map F∈RC×H×W from the backbone, where C indicates the number of channels, and
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Figure 2: The structure of the global-local attention mechanism. There are two attention
modules: local attention module and global attention module.

the H×W is the spatial resolution. After flatten along the spatial dimension and transformed
by using three 1× 1 convolutions, Qs, Ks, and Vs tensors are obtained. The dimensions
of them are C×N, where N represents HW . We model the spatial relationships by matrix
multiplication of Qs and Ks followed by softmax operation over locations to obtain the global
spatial attention map Ag

s :
Ag

s = so f tmax(QT
s Ks) (1)

The global spatial attention map is multiplied with Vs. Finally, the refined feature map Fg ∈
RC×H×W is obtained by using 1×1 convolution and the flatten operation.

After obtaining the enhanced feature maps F l an Fg from local attention modules and
global attention modules respectively, the final feature map FGL is obtained through the input
feature map F combined with F l and Fg. The summation operation is adopted for the feature
combination.

3.3 Feature Interpolation Regularization Module

In order to optimize the model capability to produce better feature embedding for predicting
head poses, we propose a feature interpolation regularization module in our siamese struc-
ture during the training process. The two feature embeddings generated from head pose
estimation module with the siamese structure become the inputs of the feature interpolation
regularization module, as shown in Figure 1 highlighed by red rectangles. They are origi-
nally used to predict the head poses through the one FC layer. In the feature interpolation
regularization module, two feature embeddings f̂1 and f̂2 are utilized to generate the one
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feature embedding f̂3 first by:

f̂3 = ( f̂1 + f̂2)/(||( f̂1 + f̂2)||2) (2)

where f̂1 and f̂2 represent the unit feature vectors after flatten and L2 normalization opera-
tions. The corresponding ground-truth rotation matrix label R3 is generated by two ground-
truth rotation matrices R1 and R2 of those feature embedding. Finally, we can use the gener-
ated rotation matrix label R3 to supervise the rotation prediction generated from the feature
embedding f̂3 through the shared FC layer in the head pose estimation module by rotation
loss function. The detail of generating rotation matrix label is shown in the supplementary
material.

3.4 Loss Function
For the prediction of rotation matrix, we adopt the geodesic distance loss, which is formu-
lated as follows:

Geo(Rp
i ,R

gt
i ) = cos−1(

tr(Rp
i Rgt

i )−1
2

) (3)

where Geo(·) is the geodesic distance loss. Rp
i and Rgt

i denote the prediction and ground
truth of the rotation matrix from ith image, respectively. tr(·) is the trace of the matrix Rp

i Rgt
i .

In order to learn a more abundantly representation, our model will predict the landmarks
P ∈ R68×2 as an auxiliary task during training. The landmarks loss is defined as Eq. 4:

MSE(Pp
i ,P

gt
i ) =

L

∑
k=1

(Pgt
ik −Pp

ik)
2 (4)

where MSE(·) is the MSE loss calculate from all the landmarks. Pp
ik and Pgt

ik denote the kth

landmark of the prediction and ground truth from ith image, respectively.
The overall loss of our model combines the geodesic distance loss and the landmark

loss. By the feature interpolation regularization module we mentioned above, an additional
geodesic distance loss will be considered. The overall loss function is formulated as follows:

Ltotal =
1
N

N

∑
i=1

(Geo(Rp
i ,R

gt
i )+α ×MSE(Pp

i ,P
gt
i ))

+
1
N

N

∑
j=1

(Geo(Rp
j ,R

gt
j )+α ×MSE(Pp

j ,P
gt
j ))

+
1
N

N

∑
r=1

β ×Geo(Rp
r ,R

gt
r )

(5)

where N is equal to the batch size. i, j, and r denote the paired data from the siamese network
and the data from the feature interpolating operation of the paired data, respectively. α is a
hyper-parameter to balances the geodesic distance loss and landmark prediction loss. In this
paper, α is empirically set to 0.1 and β is set to 0.5.

4 Experiments
This section illuminates the implementation details, the dataset and evaluation for training
and testing, the comparison with state-of-the-art methods, and the ablation studies.
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4.1 Implementation details
The model is end-to-end trained on a single RTX 3090 GPU with a mini-batch size of 64
for 30 epochs. Adam optimizer [16] is adopted with an initial learning rate starting from
0.0001. During the training period, the learning rate decay at epochs 10 and 20 by a factor
of 5. The data augmentation is applied on the 224×224 input image with randomly scaling
and flipping. Additionally, we utilize the synthetic facial mask operation with the tool of
MaskTheFace1 as a way of data augmentation. In each training iteration, we randomly
sample 30% data to synthesize facial masks with different textures and colors.

4.2 Datasets and Evaluation
Dataset: 300W-LP [31], AFLW2000 [31] and BIWI [7] datasets are commonly used for
the head pose estimation task. 300W-LP dataset is synthesised by using face profiling tech-
nique with 3D meshing to generate 61,225 images in total and further expands to 122,450
images with flipping. AFLW2000 dataset contains the first 2,000 images of the AFLW [18]
dataset with large variations, various illumination and occlusion conditions. BIWI dataset
was collected in a lab environment. It contains 24 videos of 20 subject about 15,000 im-
ages. However, those datasets have fewer cases with mask occlusion. MAFA [9] dataset
provides the head pose classification label such as frontal, left side, right side labels under
facial masks. After data cleaning in the MAFA testing dataset, there are about 6,000 face
images for testing.

Evaluation: For training and evaluating the proposed network compared to other re-
search, we follow the following two protocols for head pose estimation task. In Protocol
1 used in [23, 27], the network is trained on 300W-LP dataset, and AFLW2000 and BIWI
datasets are used for testing. Mean absolute error (MAE) of the Euler angles is adopted as the
evaluation metric. In Protocol 2, the network is trained on 300W-LP dataset and evaluated on
MAFA dataset to validate the performance under facial mask situations. Similar to the eval-
uation setting in [19] which focuses on the two categories, the front face and side face, we
further divide the side face into left and right sides. Specifically, we take [−20◦,20◦] of yaw
angle as the range for front face category, and others for two other categories accordingly.
The evaluation metric is the classification accuracy.

4.3 Competing Methods
We compare GLPose with the state-of-the-art methods in Table 1 on Protocol 1. Our pro-
posed method outperforms the state-of-the-art works in each angle on the AFLW2000 dataset.
Specifically, our method has obtained 3.35, 4.58 and 3.11 angle errors in yaw, pitch, roll, re-
spectively. On the BIWI dataset, the performance is promising compared to the other works.
Furthermore, the average errors over three major pose angles are the lowest in both datasets,
as shown in the last column of each dataset in Tabel 1. In Protocol 2, we select two com-
petitive works [12, 27] for comparison. There are two reasons why we take two head pose
models: 1). they provide source codes so that we can implement their works for our purpose.
2). the one is widely used for analysis and the other is the latest work. As shown in Table
2, we can observe that our method has obtained promising performance compared to other
competitive methods, which obtains 86.04% classification accuracy over three classes. Fur-
thermore, the qualitative results on three datasets are shown in the supplementary material.

1https://github.com/aqeelanwar/MaskTheFace
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Table 1: Comparison with state-of-the-art on BIWI and AFLW2000 for Protocol 1.
BIWI AFLW2000

Method Yaw Pitch Roll MAE Yaw Pitch Roll MAE
Dlib (68 points) [15] 16.8 13.8 6.19 12.2 23.1 13.6 10.5 15.8
FAN (12 points) [1] 8.53 7.48 7.63 7.89 6.36 12.3 8.71 9.12
HopeNet (α=1) [23] 4.81 6.61 3.27 4.90 6.92 6.64 5.67 6.41
HopeNet (α=2) [23] 5.17 6.98 3.39 5.18 6.47 6.56 5.44 6.16

QuatNet [13] 2.94 5.49 4.01 4.15 3.97 5.62 3.92 4.50
FSA-Net [27] 4.27 4.96 2.76 4.00 4.50 6.08 4.64 5.07

WHENet-V [30] 3.60 4.10 2.73 3.48 4.44 5.75 4.31 4.83
WHENet [30] 3.99 4.39 3.06 3.81 5.11 6.24 4.92 5.42

FDN [28] 4.52 4.70 2.56 3.93 3.78 5.61 3.88 4.42
TriNet [2] 3.04 4.76 4.11 3.97 4.20 5.77 4.04 4.67

6DRepNet [12] 3.24 4.48 2.68 3.47 3.63 4.91 3.37 3.97
MFDNet [20] 3.40 4.68 2.77 3.62 4.30 5.16 3.69 4.38

Ours 4.18 3.45 2.67 3.43 3.35 4.58 3.11 3.68

Table 2: Comparison with competitive works on MAFA for Protocol 2.
Method Accuracy (%)

FSA-Net [27] 64.16
6DRepNet [12] 81.52

Ours 86.04

4.4 Ablation studies

In this section, we conduct extensive experiments to verify and understand the effectiveness
of design components. It is noted that the network with the siamese structure will only be
utilized when the feature interpolation regularization module is used. As shown in Table 3,
we first compare each individual component. The feature interpolation regularization mod-
ule shows the better performance because it focuses on optimizing the embedded features.
Combining the global-local attention mechanism with multi-task learning is more useful to
learn the facial information. Moreover, the final performance is the best when all the modules
are fully utilized.

Table 3: Ablation analysis on different modules. GLAM, MTL and FIRM represent global-
local attention mechanism, multi-task learning and feature interpolation regularization mod-
ule respectively.

BIWI AFLW2000
GLAM MTL FIRM Yaw Pitch Roll MAE Yaw Pitch Roll MAE

4.34 4.06 2.77 3.72 3.76 4.98 3.23 3.99
! 4.17 3.64 2.77 3.52 3.63 4.87 3.22 3.90

! 4.19 3.63 2.74 3.52 3.75 4.95 3.24 3.98
! 4.25 3.53 2.74 3.50 3.41 4.83 3.21 3.81

! ! 4.05 3.60 2.60 3.41 3.50 4.86 3.23 3.86
! ! ! 4.18 3.45 2.67 3.43 3.35 4.58 3.11 3.68
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5 Conclusion
In this paper, we propose a novel network called GLPose for head pose estimation. In the
proposed GLPose, the global-local attention mechanism integrated into the backbone net-
work extracts local and global information, while the feature interpolation regularization
module optimizes the network modeling ability to produce better feature embeddings and
the facial landmark detection module learns the additional information. Furthermore, to ad-
dress the performance degradation of the previous head pose estimation models under the
situation where humans wear facial masks and problem of lacking enough data with mask
occlusion in existing datasets, we utilize the synthetic facial mask operation as a way of data
augmentation for model training. Extensive experiments validate the effectiveness of our
proposed model, which shows competitive performance compared to other existing meth-
ods, even when the faces are occluded by facial masks.
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