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Motivation and Objective
◼ The public datasets for head pose estimation have fewer cases of facial mask

occlusion.

➢ Generate the synthesized facial masks on original datasets as a way of the data

augmentation.

◼ Hardly to discriminate the valuable information from feature maps, especially

under facial mask situations.

➢ Develop a deep learning model with attention mechanisms and auxiliary task

supervision to make features more discriminative to estimate head pose.

◼ The performance for head pose estimation might degrade when the head

orientations are not seen before.

➢ Design the regularization module to optimize the feature space for head pose

estimation to increase the robustness.

Methodology

Architecture Overview

Global-Local Attention Module

◼ To discriminate the valuable features effectively, we design global-local attention

module, which consists of the global attention module and local attention module.

◼ We apply CBAM[1] as our local attention module, which introduce channel

attention and spatial attention into the model. And inspired by the Vision

Transformer[2], self-attention is applied as our global attention module to extract

the features of larger areas over the feature maps to obtain global information.

◼ The proposed GLPose integrates the global-local attention mechanisms in the

backbone network. The facial landmark detection module as an auxiliary task for

predicting the 2D facial landmarks and the head pose prediction module as a main

task for predicting head poses. The feature embeddings from two HPE branches

are fed into the feature interpolation regularization module (FIRM).

◼ The FIRM and the facial landmark detection module can be removed in the

reference stage and thus will not affect the inference time.

Facial Landmark Detection & Head Pose Estimation Module

Feature Interpolation Regularization Module  

◼ To help the model learn additional and discriminative features, we design a

landmark detection branch as the auxiliary task supervision. The output of this

module is landmark locations 𝑌𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 ∈ ℝ68×2, where DSC refer to depthwise

separable convolution. The HPE branch predicts the rotation matrix 𝑌ℎ𝑒𝑎𝑑𝑝𝑜𝑠𝑒 ∈

ℝ3×3, which is transformed from 𝑌𝑐𝑜𝑛𝑡𝑖
ℎ using the transformation function 𝑓𝐺𝑆.

◼ In order to optimize the feature embedding for the head pose estimation model for

further improvement, we design the feature interpolation regularization module

during training.
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For 𝑖𝑡ℎ input image, where

𝑅𝑖
𝑝

: the model prediction of the rotation matrix

𝑅𝑖
𝑝

: the ground truth of the rotation matrix

𝑡𝑟 ∙ : the trace of the rotation matrix

For 𝑖𝑡ℎ input image, where

𝑃𝑖
𝑝

: the model prediction of landmark locations

𝑃𝑖
𝑔

: the ground truth of landmark locations

L : Number of landmarks

Experiments

Comparisons on AFLW2000 and BIWI datasets

Ablation Study
Module BIWI AFLW2000

GLAM Multi-Task
Feature 

Interpolation
Yaw Pitch Roll MAE Yaw Pitch Roll MAE

4.34 4.06 2.77 3.72 3.76 4.98 3.23 3.99

√ 4.17 3.64 2.77 3.52 3.63 4.87 3.22 3.90

√ 4.19 3.63 2.74 3.52 3.75 4.95 3.24 3.98

√ 4.24 3.53 2.74 3.50 3.41 4.83 3.21 3.81

√ √ 4.05 3.60 2.60 3.41 3.50 4.86 3.23 3.86

√ √ √ 4.18 3.45 2.67 3.43 3.35 4.58 3.11 3.68
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* indicates using the synthesis data during training

Method
AFLW2000 BIWI

Yaw Pitch Roll MAE Yaw Pitch Roll MAE

HopeNet[1] 6.47 6.56 5.44 6.16 5.17 6.98 3.39 5.18

FSA-Net[2] 4.50 6.08 4.64 5.07 4.27 4.96 2.76 4.00

TriNet[3] 4.20 5.77 4.04 4.67 3.04 4.76 4.11 3.97

OsGG-Net[4] 3.96 5.71 3.51 4.39 3.26 4.85 3.38 3.83

WHENet[5] 5.11 6.24 4.92 5.42 3.99 4.39 3.06 3.81

6DRepNet[6] 3.63 4.91 3.37 3.97 3.24 4.48 2.68 3.47

Our 3.33 4.71 3.16 3.73 4.23 3.54 2.78 3.51

Our* 3.35 4.58 3.11 3.68 4.18 3.45 2.67 3.43


