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Abstract

Learning deep representations for visual place recognition is commonly performed
using pairwise or triple loss functions that highly depend on the hardness of the examples
sampled at each training iteration. Existing techniques address this by using computa-
tionally and memory expensive offline hard mining, which consists of identifying, at
each iteration, the hardest samples from the training set. In this paper we introduce a
new technique that performs global hard mini-batch sampling based on proxies. To do
so, we add a new end-to-end trainable branch to the network, which generates efficient
place descriptors (one proxy for each place). These proxy representations are thus used
to construct a global index that encompasses the similarities between all places in the
dataset, allowing for highly informative mini-batch sampling at each training iteration.
Our method can be used in combination with all existing pairwise and triplet loss func-
tions with negligible additional memory and computation cost. We run extensive ablation
studies and show that our technique brings new state-of-the-art performance on multiple
large-scale benchmarks such as Pittsburgh, Mapillary-SLS and SPED. In particular, our
method provides more than 100% relative improvement on the challenging Nordland
dataset. Our code is available at https://github.com/amaralibey/GPM

1 Introduction

Visual place recognition (VPR) consists of determining the location of a place depicted in
a query image by comparing it to a database of previously visited places with known geo-
references. This is of major importance for many robotics and computer vision tasks, such
as autonomous driving [5, 19], SLAM [8, 21], image geo-localization [3, 11, 29] and 3D
reconstruction [6, 23]. Recently, advances in deep learning [20] have made retrieval-based
place recognition a preferable choice for efficient and large-scale localization. Current VPR
techniques [2, 11, 18, 27, 29, 31, 37] use metric learning loss functions to train deep neu-
ral networks for VPR. These loss functions operate on the relationships between images in
a mini-batch. As such, representations of images from the same place are brought closer
and those from different places are distanced [22]. For instance, in the most used architec-
ture for VPR, NetVLAD [2, 11, 18, 29, 31], the network is trained using a triplet ranking
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loss function that operates on triplets, each of which consists of a query image, a positive
image depicting the same place as the query, and a negative image depicting a different
place. Moreover, the triples need to be informative in order for the network to converge [13],
meaning that for each query, the negative must be hard for the network to distinguish from
the positive. To do so, these techniques rely on offline hard negative mining, where ev-
ery image representation generated by the network is kept in a memory bank (cache), to be
used offline (out of the training loop) to find the hardest negatives for each training query.
Although offline mining allows the network to converge [31], it involves a large memory
footprint and computational overhead. Another approach for informative example mining is
online hard negative mining (OHM) [13, 32], which consists of first forming mini-batches,
by randomly selecting a subset of places from the dataset and sampling images from each
of them. Then, in a later stage of the forward pass, select only the most informative triples
(or pairs) present in the mini-batch and use them to compute the loss. Nevertheless, ran-
domly constructed mini-batches can generate a large number of triplets (or pairs), most of
which may be uninformative [13]. Yet selecting informative samples is crucial to robust
feature learning [22]. The advantage of OHM is that there is no memory bank (cache) and
no out-of-the-loop mining step. However, as training progresses and the network eventu-
ally learns robust representations, the fraction of informative triplets (or pairs) within the
randomly sampled mini-batches becomes limited (i.e., the network becomes good at distin-
guishing hard negatives). Therefore, it’s recommended to use very large batch sizes [13] to
potentially increase the presence of hard examples at each iteration.

In this work, we propose a new globally informed mini-batch sampling technique, which
instead of randomly sampling places at each iteration, it uses a proxy index to construct
mini-batches containing visually similar places. The main idea behind our technique is the
following: instead of caching highly dimensional individual image descriptors to mine hard
negatives, we propose to add an auxiliary branch that computes compact place-specific rep-
resentations that we call proxies. Thus, each place in the dataset can be globally represented
by one low-dimensional proxy that can be effectively cached during the training. This allows
us to build an index in which places are gathered in the same mini-batch according to the
similarity of their proxies. Our technique involves negligible computational and memory
overhead, while drastically improving performance.

2 Related Work

2.1 Visual Place Recognition

Most state-of-the-art techniques in VPR [2, 11, 14, 17, 18, 25, 29, 31] train the network with
mini-batches of triplets of images. Such techniques employ offline hard negative mining to
form informative triplets. This is done by storing in a memory cache all image representa-
tions generated during the training, and using k-NN to retrieve, for each training query, the
hardest negatives among all references in the cache and form informative triplets (the hard
negatives are the images that do not depict the same place as the query but are too close to
it in the representation space). However, most SOTA methods generate highly dimensional
representations during the training phase, for instance, techniques that rely on NetVLAD [2]
generate descriptors of size d = 32768. As a result, caching representations when training
with large datasets such as Mapillary SLS [31] or GSV-Cities [1] quickly becomes infeasi-
ble, because of both the computational overhead and the memory footprint of k-NN, which
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Figure 1: A diagram of our proposed method. We add a new end-to-end trainable branch to
the network (proxy head H) that projects highly dimensional vectors X; into very compact
representations z; ; we use the latter to compute one proxy descriptor ¢; for each place in the
mini-batch. We detach each proxy from the computation graph and cache it into a memory
bank Q. Then, at the begining of each epoch, we construct an index upon Q, in which places
are gathered together according to the similarity of their proxies. This index is used to sample
mini-batches containing similar places, which yields highly informative pairs or triplets. We
call this strategy Global Proxy-based Hard Mining (GPM).

has a computational complexity of O(QRd) and a memory footprint of O(Rd) [7], where R
is the number of reference samples (cached representations), d the dimensionality of each
sample, and Q is the number of queries to be searched. In [2, 18, 27] the representations of
all the training examples of Pitt250k dataset are cached. Then, after a fixed number of itera-
tions, the training is paused and the cache is used to mine the hardest 10 negatives for each
training query (to form hard triplets). Importantly, the cache is recalculated every 250 to
1000 iterations. Warburg et al. [31] trained NetVLAD on Mapillary-SLS, which is a dataset
comprising 1.6M images. Faced with the huge memory overhead, they used a subcaching
strategy, where only a subset of the training images are cached, from which the hard neg-
atives were periodically mined. Note that, if the NetVLAD representations of all images
in MSLS dataset [31] were cached, the memory cache would be 196GB in size. From the
above, it is evident that the extra memory and computational cost of offline hard mining for
VPR remains an issue to be addressed.

2.2 Deep Metric Learning

Place recognition networks are generally trained using ranking loss functions issued from
deep metric learning [36], such as triplet ranking loss [24] and contrastive loss [27]. How-
ever, during the training, deep metric learning (DML) networks often generate very compact
representations compared to VPR, ranging from d = 128 to d = 512 [4]. This makes any
caching mechanism much less greedy and computationally inexpensive. Related to our work
are DML approaches [9, 26] that perform negative mining on class-level representations (a
class could be regarded as the equivalent of a place in VPR), under the assumption that class-
level similarity is a good approximation of the similarity between instances. Smirnov et
al. [9] developed a technique that constructs a hierarchical tree for the triplet loss function.
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The strategy behind their approach is to store class-level representations during the train-
ing, identify neighbouring classes and put them in the same mini-batch, resulting in more
informative mini-batches that can be further exploited by online hard mining. Applying
these techniques directly to train VPR networks would require to cache highly dimensional
image-level representations (e.g. 32K for NetVLAD), which is not feasible when the training
dataset contains thousands of different places.

3 Methodology

As mentioned above, VPR techniques generate highly dimensional representations, making
caching and hard mining with k-NN impractical for large-scale datasets. Knowing that the
complexity of k-NN is linearly dependent on the number of references Q that need to be
cached and their dimensionality d [7]. And considering that the only purpose of the caching
mechanism is to help retrieve hard examples. We propose to project the highly dimensional
pooling representations (e.g. the resulting NetVLAD representations) into a separate branch
(H in figure 1) that we call proxy head. H is an end-to-end trainable module that learns
place-specific compact vectors of significantly smaller dimension compared to the pooling
module. During each epoch, we capture and cache the semantics of each place (instead of
each image) with one compact vector, acting as its global proxy. Therefore, the number
of proxies to be cached is one order of magnitude smaller than the number of images in
the dataset (considering that a place is generally depicted by 8 to 20 images as in GSV-
Cities [1]). Most importantly, we can choose d’ the dimensionality of the proxy head H
to be several orders of magnitude smaller than d the dimensionality of the pooling layer.
This allows to perform global hard mining based on the compact-proxies, with negligible
additional memory and computation cost as we show in section 4 (i.e., using k-NN on the
proxies is orders of magnitude more efficient).

3.1 Representation Learning for VPR

Given a dataset of places D = {P}, Py, ...,Py} where P, = ({I{,Iﬁ,...,](m} ,yi) is a set of
images depicting the same place and sharing the same identity (or label) y;. The goal is to
learn a function fy which is, in most cases, a deep neural network composed of a backbone
network followed by a pooling layer (e.g., NetVLAD). The network fy takes an input image
I; and outputs a representation vector x; € R¢ such that the similarity of a pair of instances
(x;,X;) is higher if they represent the same place, and lower otherwise.

As the generated representation fg (I;) = x; is highly dimensional (i.e., d = 32k for
NetVLAD [2]), we propose to project it further in a separate branch of the network, that
we call proxy head (H), represented by a function iy, : R? — R? and projects the outputs
from the pooling layer to a smaller Euclidean space where d’ << d as illustrated in figure 1.
Formally, for each vector x;, the proxy head produces a compact projection z; as follow:

z; = hy (fo (I})) = hy (Xi) (1)

In this work, H is a fully connected layer that projects d-dimensional inputs to d’-dimensional
outputs followed by L2 normalization. This gives us the control of the proxy dimension-
ality d’. However, H could also be an MLP or a trainable module of different architec-
ture. We use backpropagation to jointly learn the parameters 6 and v, using pair based (or
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triplet based) loss functions from metric learning literature [22] such as Contrastive loss [10],
Triplet loss [13] and Multi-Similarity loss [30]. Nete: since the proxy head is only used dur-
ing the training phase (to mine hard samples) and discarded during evaluation and test, we
might not need to backpropagate the gradient from # back to the pooling layer. Quantitative
experiments show that this does not affect performance.

3.2 Global Proxy-based Hard Mining (GPM)

Traditionally, during the training phase, each mini-batch is formed by randomly sampling M
places from the dataset, then picking K images from each one of them, thus resulting in a
mini-batch B of size M x K. The goal of global hard hard mining is to populate each training
mini-batch with M similar places, which in turn yields hard pairs and triplets, potentially
inducing a higher loss value, thereby learning robust and discriminative representations. For
this purpose, we use the representations generated by the proxy head 7, and compute for
each place P; € B, a single compact descriptor ¢; as follows:

cr= o3 Xy Us (1) @)

I€P,
where ¢; corresponds to the average of the proxy representations of the images depicting P,
in the mini-batch . During the training we regard ¢; as a global descriptor (a proxy) of P,
and cache it along with its identity y; into a memory bank Q. Then, at the end of each epoch,
we use k-NN to build an index upon €, in which places are gathered together according to
the similarity of their proxies (similar places need to appear in the same mini-batch) as in
Algorithm 1.

Algorithm 1: Index based mini-batch sampling

input : Q: the memory bank comprising proxies representing all places in the
dataset
M: the number of places per mini-batch.

output: £: a list of tuples, where each tuple contains M identities of places that
need to be sampled in the same mini-batch.

1 S+ k-NN(k=M) b Initialize a k-NN module S with k equal to M the number of
places per mini-batch.

2 S.add(Q) > Add the contents of Q to S as references.
while S £ 0 do

3 Randomly pick a place ¢; from S

4 T + S.search(c;) > Search S for the M-most similar places to c;.

5 L+ LUT > Append the M identities to L.

6 S+ S\T > Remove from & all places present in T.

For the epoch that follows, the mini-batch sampler picks one tuple from £ at each it-
eration, yielding in M similar places. We then pick K images from each place resulting in
highly informative mini-batches of size M x K. Qualitative results in section 4.4 show the
effectiveness of our approach in constructing informative mini-batches.

Connection to proxy-based loss functions. Deep metric learning techniques that employ
the term ‘proxy’, such as [15, 33, 34], are fundamentally different from our approach, in


Citation
Citation
{Musgrave, Belongie, and Lim} 2020

Citation
Citation
{Hadsell, Chopra, and LeCun} 2006

Citation
Citation
{Hermans, Beyer, and Leibe} 2017

Citation
Citation
{Wang, Han, Huang, Dong, and Scott} 2019

Citation
Citation
{Kim, Kim, Cho, and Kwak} 2020

Citation
Citation
{Yang, Bastan, Zhu, Gray, and Samaras} 2022

Citation
Citation
{Yao, Bai, Zhang, Zhang, Sun, Chen, Li, and Yu} 2022


6  ALI-BEY, CHAIB-DRAA, GIGUERE: GLOBAL PROXY-BASED HARD MINING FOR VPR

that, they learn proxies at the loss level, and optimize on the similarity between the proxies
and individual samples in the mini-batch. However, learning proxies at the loss level forces
them to be of the same dimensionality as the individual samples (e.g., 32K if used to train
NetVLAD). In contrast, we learn compact proxies independently of the loss function, and
use them only to construct informative mini-batches.

4 Experiments

Dataset and Metrics. GSV-Cities dataset [1] is used for training, it contains 65k different
places spread on numerous cities around the world, totalling 552k images. For testing, we use
the following 4 benchmarks, Pitts250k-test [28], MSLS [31], SPED [35] and Nordland [35]
which contain, respectively, 8K, 750, 607 and 1622 query images, and 83k, 19k, 607 and
1622 reference images. We follow the same evaluation metric as [2, 31, 35] where the
recall@K is reported.

Default Settings. In all experiments, we use ResNet-50[12] as backbone network, pretrained
on ImageNet [16] and cropped at the last residual bloc; coupled with NetVLAD [2] as a
pooling layer, we chose NetVLAD because it’s the most widely used pooling technique
that showed consistent SOTA performance. Stochastic gradient descent (SGD) is utilized
for optimization, with momentum 0.95 and weight decay 0.0001. The initial learning rate
on 0.05 is multiplied by 0.3 after each 5 epochs. We train for a maximum of 30 epochs
using images resized to 224 x 224. Unless otherwise specified, we use mini-batch containing
M = 60 places, each of which depicted by K = 4 images (240 in total) and fix the output size
of the proxy head d’ to 128 when applicable.

4.1 Effectiveness of GPM

To demonstrate the effectiveness of out proposed method, we conduct ablation studies on 4
different VPR benchmarks. We illustrate the effect of using our technique (GPM) alongside
three different loss functions, namely, Contrastive loss [10], Triplet loss [13] and Multi-
Similarity loss [30]. For each loss function, we conducted four test scenarios (one on each
line) as shown in Table 1. First, we train the network with randomly constructed batches
without OHM or GPM (baseline #1). In the second scenario, we add GPM to the first base-
line and show the effect of globally informed sampling provided by our method. The results
demonstrate that GPM alone can greatly improve performance of all three loss functions.
For example, the triplet loss improved recall@1 (in absolute value) by 4.3,4.1,3.6 and 3.4
points on Pitts250k, MSLS, SPED and Nordland respectively, while Multi-Similarity loss
improved by 5.4,8.5,13.9 and 8.6 points.

In the third scenario (baseline #2), online hard mining (OHM) is used during the training
without GPM. This consists of selecting the most informative pairs or triplets from ran-
domly sampled mini-batches. The results show that OHM can improve performance over
baseline #1, which is consistent with the existing literature [13].

For the last scenario, we used GPM combined with baseline #2 (i.e., mini-batches are
sampled using GPM and then further exploited by OHM), results show that our technique
(GPM) consistently outperform the baseline. For instance, contrastive loss improved re-
call@1 (in percentage points) by 5.9 on Pitts250k, 4.7 on MSLS, 10.1 on SPED and 16.8 on
Nordland. Note that the relative performance boost introduced by GPM on Nordland is more
than 100% for both contrastive and triplet loss. The best overall performance is achieved
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| Hard mining | Pitts250k-test | MSLS-val | SPED | Nordland

[ OHM GPM | R@l R@5 R@I0 [R@I R@5 R@I0 | R@T R@5 R@I0 | R@T R@5 R@I0
770 900 936 [ 677 792 824 [ 537 695 758 [ 84 163 206
v | 813 919 949 | 718 820 863 | 573 718 778 | 118 203 259

Loss function

Triplet 7 875 954 969 | 740 851 8§77 | 624 786 832 | 101 179 226

v v | 900 964 976 | 776 880 904 | 713 837 873 | 202 332 388

830 930 952 | 727 828 858 | 537 6/2 748 | 80 138 173

. v | 888 952 968 | 790 858 885 | 677 792 834 | 208 339 415
Contrastive

7 845 940 959 | 746 847 818 | 634 769 825 | 146 252 312
v v | 904 964 976 | 793 885 907 | 735 855 889 | 314 464 535
840 933 955 | 727 827 865 | 507 651 715 | 94 179 217

v | 894 960 973 | 812 891 909 | 646 764 806 | 180 301 360
7 895 963 976 | 774 872 90.1 | 746 868 899 | 291 433 502
v v | 915 972 981 | 820 904 914 | 794 906 932 | 385 539 607

Multi-Similarity

Table 1: Ablation. We study the performance gain of three loss functions. For each loss, we train 4
networks. 2 of which are baselines (one with Online Hard Mining (OHM) and one without), and the
other 2 are to compare the performance gain introduced by our method (GPM).

using Multi-Similarity loss which boosted the recall@1 over baseline #2 by, respectively,
2.0,4.6,4.8 and 9.4 points on the four benchmarks. This ablation study highlights the effec-
tiveness of GPM compared to randomly constructed mini-batches.

These results make even more sense when we look at the curves on Figure 2 where we
keep track of the fraction of informative pairs and triplets within the mini-batch. As training
progresses, the network learns to identify most hard samples, making a large fraction of pairs
and triplets in the mini-batch uninformative. This is highlighted by the red-dotted curve in
Figure 2 where the fraction of informative pairs and triplets rapidly decreases to less than
15% after 15K iterations. More importantly, when we use GPM, where mini-batches are
constructed in such a way to incorporate highly informative pairs and triplets, the fraction
of informative samples (blue line) stays at around 50% even after 30K iterations, which
explains the performance boost in Table 1.

W with GPM == == without GPM

airs per mini-batch

0 10000 20000 5000  1000f

00 00 000 5000 10000 15000 20000 25000
iterations iterations iterations

(a) Triplet loss (b) Contrastive loss (c) Multi-Similarity loss
Figure 2: Percentage of valid triplets/pairs per mini-batch during the training. Our technique (GPM)
construct highly informative mini-batches, which in turn keeps the number of valid pairs/triplets higher
during all the training phase.

4.2 Mini-batch Size

The size of the mini-batch is a key factor in the performance of many pair and triplet based
learning approaches. In this experiment, we investigate its impact by using Multi-Similarity
loss with and without GPM on three benchmarks. Results are shown in Figure 3, where we
observe that the smaller the mini-batch size, the lower the performance. Moreover, when
comparing performance with and without GPM, the gap widens as the batch size decreases.
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This demonstrates that our method brings consistent performance improvements with a wide
range of mini-batch sizes.

@ with GPM % without GPM
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Figure 3: Impact of the mini-batch size when training with and without GPM. We report recall@ 1
on Pitts30k-test, MSLS and SPED respectively. The horizontal axis shows M the number of places in
the mini-batch. GPM is effective for a wide range of mini-batch sizes, with more impact when smaller
mini-batches are used for training. This is of great importance when training hardware resources are
limited.

4.3 Memory and computational cost

Since our method (GPM) requires to add a trainable branch to the network and a memory
cache, we investigate the additional computation and memory cost by varying the dimen-
sionality of the proxy head. For each configuration, we train the network for 20 epochs and
record the training time (including the time to build the index and construct mini-batches),
the GPU memory required during the training, the size of the memory bank Q (Cache size)
and the recall@1 performance on Pitts30k-test.

We first train a baseline model without GPM, and compare against it. Note that for
the GPU memory and Cache size, we report the amount of extra memory that was needed
compared to the baseline. Table 2 shows that the baseline model takes 1.93 hours to finish
20 training epochs and achieve a recall@1 of 86.6%. Since the baseline does not use GPM,
there is no extra cache memory (cache size = (). We then run multiple experiments with
GPM, by varying the dimensionality d’ of the proxy head (from 32 to 1024). The results
show that there is a significant increase in recall@1 performance (86.6% — 89.4%), and a
negligible amount of GPU and cache memory. For example, by using a proxy of dimension
d' = 128 (as in the above experiments), we end up with 2MB of extra GPU memory for
training H and 32MB for the memory cache with practically no extra training time. We
also notice that proxy with higher dimensionality does not automatically translate to better
performance (e.g. GPM with d’ = 256 yields better performance than d’ = 1024).

Particularly, we do another experiment (the rightmost column in table 2) where instead
of using a proxy head to generate proxies, we save the NetVLAD representations into cache
(we populate Q with 32k-dimensional vectors) and apply global hard mining on them. We
end up with 8.0GB of extra cache memory, more than double the training time and most
importantly we get worst recall@1 performance (88.7% compared to 89.3% when using a
256-d proxy head). This can be explained by the fact that using the NetVLAD represen-
tations resulted in mining the most difficult pairs which is know to impact performance if
the dataset contains a certain amount of outliers [13]. This experiment shows that, even if
memory and computation are not a concern, GPM is still a better choice for learning robust
representations.
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Baseline Global Proxy-based Hard Mining Global hard mining
(no GPM) (GPM) without proxy
Dimensionality 0 32 64 128 256 512 1024 32768
Training time (hours) 1.93 1.93 1.93 1.93 1.94 2.05 2.1 4.83
GPU memory (GB) 10.4 +0.002 +0.002 +0.002 +0.03 +0.06  +0.14 +0.0
Cache size (GB) 0.0 +0.008 +0.016 +0.032 +0.064 +0.128 +0.256 +8.0
Recall@1 (%) 86.6 89.1 89 89.3 89.4 89 89.2 88.7

Table 2: Memory and computation cost of different dimensions of the proxy head compared against
the baseline without GPM). We also compare against global mining without a proxy head, where the
memory bank is filled with the highly dimensional NetVLAD representations.

4.4 Qualitative Results

Our technique (GPM) relies on the similarity between proxies to form mini-batches com-
prising visually similar places. In this experiment, we used GPM to sample a mini-batch
containing 6 places (M = 6) from a database of 65k different places. Note that the prob-
ability of randomly sampling 6 similar places among 65k is extremely low. We show in
Figure 4(a) a mini-batch of 6 places sampled using GPM, we notice that all 6 places are
visually similar containing similar textures and structures aligned in a similar manner. In
Figures 4(b) and 4(c) we visualize a subset of triplets and pairs mined using OHM on the
same mini-batch sampled by GPM. Some triplets contain negatives that are visually ex-
tremely difficult to distinguish. This shows how using GPM can ensure, to a certain degree,
the presence of visually similar places at each training iteration, increasing the likelihood of
hard pairs and triplets, which in turn helps learn robust representations.

A

(a) A mini-batch sampled with GPM (b) Valid triplets (c) Valid pairs
Figure 4: (a) An example of a mini-batch containing 6 places sampled from a dataset of 65k places
using GPM. Each place is depicted by 4 images (a row). This highlights the ability of our technique
to construct mini-batches containing similar places, which in turn increases the presence of hard pairs
and triplets. (b) A subset of hard triplets generated from the mini-batch, each row consists of a triplet
with the blue as anchor, green as the positive and red as the hard negative. (c) A subset of positive
(green) and negative (red) pairs. All triplets and pairs have been mined in an online fashion from the
mini-batch sampled by GPM.



10 ALI-BEY, CHAIB-DRAA, GIGUERE: GLOBAL PROXY-BASED HARD MINING FOR VPR

5 Conclusion

In this paper, we proposed a novel technique that employs compact proxy descriptors to
sample highly informative mini-batches at each training iteration with negligible additional
memory and computational costs. To do so, we add an auxiliary branch to the baseline
network that generates compact place-specific descriptors, which are used to compute one
proxy for each place in the dataset. The compactness of these proxies allows to efficiently
build a global index that gathers places in the same mini-batch based on the similarity of
their proxies. Our method proved to be very effective in keeping the fraction of informative
pairs and triplets at a high level during the entire training phase, resulting in substantial
improvement in overall performance. Future works can focus on the architecture of the
proxy head and on different ways of building the global index.
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