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SFIDA
UDA vs. SFDA

• Unsupervised Domain Adaptation (UDA): learn a target
model given labeled source data and unlabeled target data.

• Source-Free Domain Adaptation (SFDA): learn a target
model given pretrained source model and unlabeled target
data.

• Source-free setting preserves data privacy and avoids storing
and transferring large amount of data.

Transductive vs. Inductive

• Transductive: target model is trained on the training set and
evaluated on the training set.

• Inductive: target model is trained on the training set and eval-
uated on the testing set.

• Inductive setting evaluates methods in terms of the general-
ization ability on unseen test data.

FRAMEWORK

• The target training data XT are first split into a pseudo-labeled
confident subset (L) and a less-confident unlabeled subset (U)
based on the pre-trained source model.

• The pseudo-labeled confident subset acts as trusty supervi-
sion to prevent over adaptation.

• The unlabeled subset is gradually updated to fine-tune the
prediction model (f = h ◦ g) through the proposed dual mov-
ing average update.

TARGET DATA SPLITTING
Target data are firstly split into confident subset L and less-
confident subset U based on the pre-trained source model.

L =

{
xi ∈ XT |max

y
p(y|xi; θfS ) ≥ pth

}
, U = XT \L. (1)

Pseudo-labels are assigned to the confident instances.

ŷi = argmax
y

p(y|xi; θfS ), xi ∈ L. (2)

The pseudo-labeled confident subset L is used as trusty supervi-
sion.

Ll = Exi∈L [− log(p(ŷi|xi; θf ))] , (3)

Higher threshold pth leads to more accurate pseudo-labels but less
amount of confident instances, however the final accuracy values of
the learnt target model are similar.
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DUAL MOVING AVERAGE BASED MODEL FINE-TUNING

Denote the normalized feature vector as zi = g(xi)/∥g(xi)∥2. We
calculate the feature mean of the c-th class in the current iteration t
as,

vt
c =

∑
xi∈(Xl∪Xu)

1(ȳi = c) · zi∑
xi∈(Xl∪Xu)

1(ȳi = c)
, (4)

where

ȳi =

{
ŷi, xi ∈ L
argmaxy p(y|xi; θf ), xi ∈ U

(5)

We then calculate the centroid µt
c of the prototypical classifier for

the current iteration t as the weighted average of the centroid µt−1
c

from the previous iteration and the feature mean vt
c in the current

iteration,
µt
c = Normalize(αµt−1

c + (1− α)vt
c), (6)

The prototypical classifier assigns a new one-hot label vector ỹt
i to

each unlabeled instance xi ∈ Xu as follow,

(ỹt
i)j =

{
1, j = argmaxc∈{1,··· ,C} z

⊤
i µ

t
c,

0, otherwise.
(7)

This newly assigned pseudo-label vector is further used to update
the soft-labels of the unlabeled subset in the following moving aver-
age manner.

qt
i = βqt−1

i + (1− β)ỹt
i , (8)

The soft-label vectors for the instances in the unlabeled subset U are
further used to fine-tune the target model f by minimizing the fol-
lowing soft cross-entropy loss in the t-th iteration:

Lu = Exi∈U

[∑
y

−(qt
i)y log p(y|xi; θf )

]
(9)

By taking both subsets L and U into consideration, the overall loss
minimization for the proposed semi-supervised fine-tuning method
is shown as follows,

min
θf

Lu + λLl, (10)

The coefficient parameters α and β control the updating degrees for
centroid and soft-label updates. Obviously slower updates are more
beneficial for the proposed method, duo to better training stability.
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RESULTS

Table 1: Test accuracy (%) on DomainNet dataset (ResNet-101). SF means
source-free.

Methods SF c�p c�r c�s p�c p�r p�s r�c r�p r�s s�c s�p s�r Avg.
ResNet-101 - 37.9 53.4 44.2 44.1 57.0 38.6 50.9 48.8 37.7 52.8 37.3 47.6 45.9
AdaMatch ✗ 45.3 56.0 60.2 35.3 47.6 42.9 46.5 48.1 49.1 46.5 41.0 42.4 46.7
MCC ✗ 37.7 55.7 42.6 45.4 59.8 39.9 54.4 53.1 37.0 58.1 46.3 56.2 48.9
CDAN ✗ 40.4 56.8 46.1 45.1 58.4 40.5 55.6 53.6 43.0 57.2 46.4 55.7 49.9
CDAN+SDAT ✗ 41.5 57.5 47.2 47.5 58.0 41.8 56.7 53.6 43.9 58.7 48.1 57.1 51.0
SHOT ✓ 45.6 63.4 49.1 35.1 64.1 21.0 57.1 51.1 44.0 61.2 47.6 62.0 48.4
SSFT-SSD ✓ 41.9 57.5 46.5 47.6 59.6 42.6 55.4 51.9 42.0 58.4 45.2 55.7 50.4
DMAPL (Ours) ✓ 46.0 63.7 49.1 53.2 64.2 46.0 61.6 55.4 47.8 64.1 50.3 63.5 55.4
Oracle - 71.1 83.4 70.0 78.4 83.4 70.0 78.4 71.1 70.0 78.4 71.1 83.4 75.7

Table 2: Test accuracy (%) on VisDA2017Split dataset (ResNet-101). SF
means source-free.

Methods SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Macro Micro
ResNet-101 - 76.7 23.9 48.1 68.0 67.8 6.5 86.0 20.6 71.8 23.9 85.0 8.4 48.9 54.1
CDAN ✗ 92.7 73.5 80.0 46.4 90.2 93.2 86.1 78.4 83.8 87.3 83.2 38.3 77.8 73.7
MCC ✗ 92.2 79.4 79.0 71.7 92.1 93.0 89.9 79.0 88.2 91.0 82.1 50.8 82.4 80.0
SHOT ✓ 77.7 85.8 80.2 54.2 90.2 63.4 82.1 73.5 88.9 80.5 83.1 54.8 76.2 73.8
SSFT-SSD ✓ 94.5 84.9 80.9 49.9 91.2 66.8 77.0 75.4 81.3 86.2 89.4 50.4 77.3 73.6
DMAPL (Ours) ✓ 95.6 84.5 78.9 58.7 92.4 96.6 80.8 82.5 90.3 88.6 87.8 59.1 83.0 79.1
Oracle - 98.2 94.7 89.5 88.0 98.7 96.4 93.6 92.8 98.0 96.5 93.4 72.6 92.7 91.5


