Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs

Osman Ülger¹, Julian Wiederer², Mohsen Ghafoorian, Vasileios Belagiannis³, Pascal Mettes¹

¹University of Amsterdam, ²Mercedes-Benz, ³Friedrich-Alexander-Universität

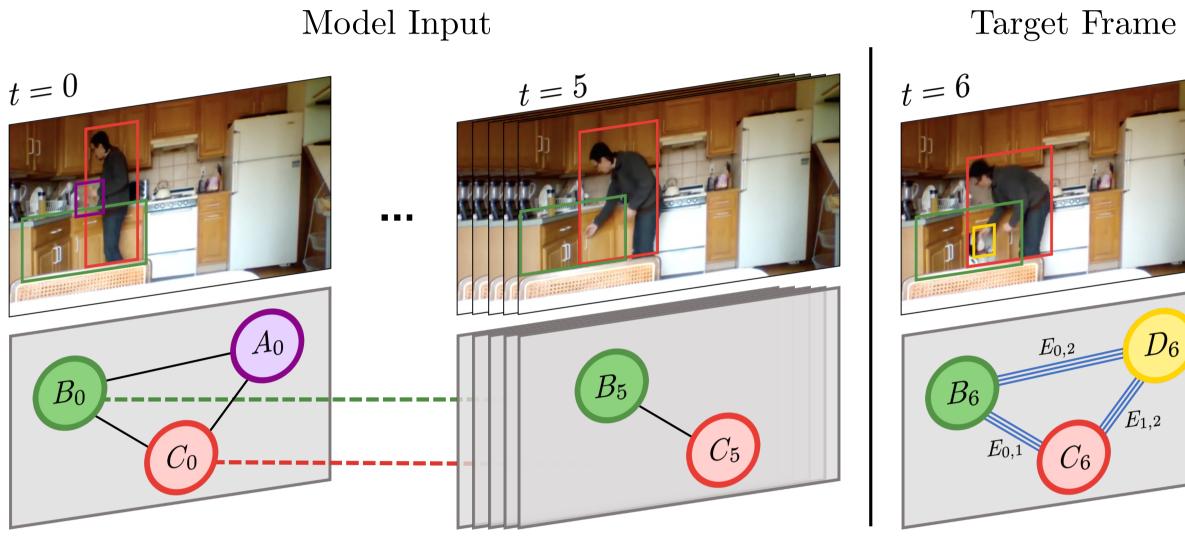
Why Temporally-Dynamic Video Graphs?

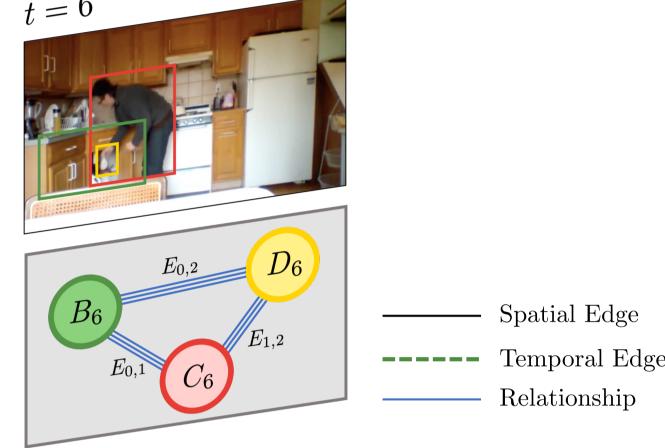
- 1. Objects (nodes) can enter and exit scenes over time
- 2. Visual relationships (edges) evolve dynamically

We need spatio-temporal video graphs dynamic in space and time – and the methods that can handle this type of data...

without padding the input!

Task





Build temporally-dynamic video graph from detections

- Spatial intra-frame links across different object detections
- Temporal inter-frame links between identical object detections across adjacent frames

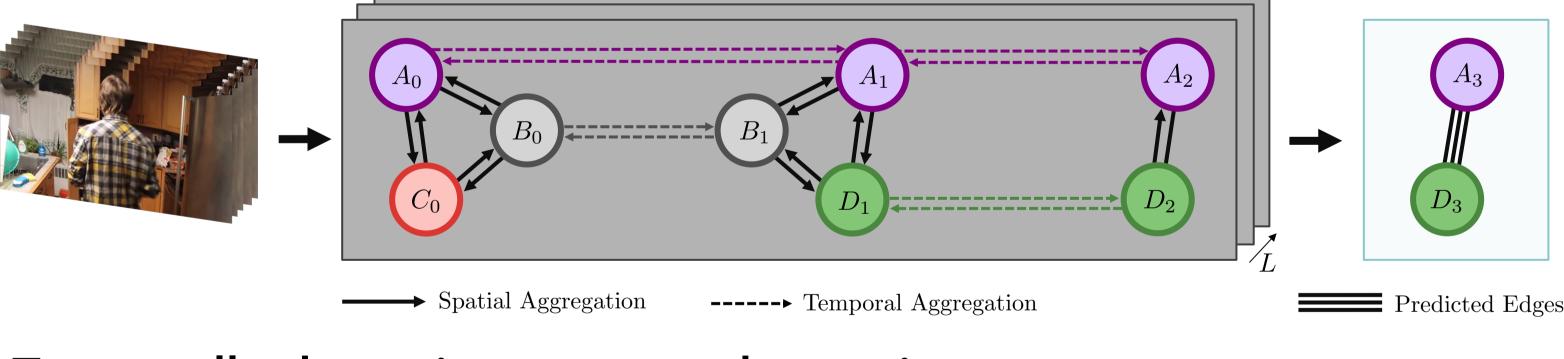
Aggregate non-padded video graph

- Obtain informed feature representations
- Capture temporal and spatial dynamics of objects

Predict the future state of multiple relation types simultaneously

- Multi-label classification of relationships in target frame
- Target frame not part of spatio-temporal video graph

MTD-GNN | Approach



Temporally-dynamic scene graph creation

- 1. Obtain object feature representations of detections from pretrained Mask-RCNN and Faster-RCNN backbones
- 2. Fully connect distinct object nodes in one frame
- 3. Link identical object nodes across adjacent using feature matching

Factorized spatio-temporal graph attention

- Multi-headed spatio-temporal graph attention layer
- Separation between relational spatial and temporal information

Multi-relational edge learning

- Use node representation outputs from graph attention layers
- Learning task-specific fully-connected layers for each relation

Prioritized Loss

- Emphasize the less frequent edge class in training set
- Normalize overrepresented class with #GT labels of larger class

Datasets

- CLEVRER
- Action Genome

Model Insights

Attention dimensionality

High dimensional attention layers are not a must. 256 dimensions for CLEVRER and 512 for Action Genome are sufficient

Attention heads

More heads consistently improve performance

Number of aggregations

Less aggregations are preferred to prevent over-smoothing

Multi-relational learning

Learning in multi-task setting benefits some, but not all edge types, likely caused by the difference in number of classes per type

Quantitative Results

	Collision prediction			Relative motion					
	F1↑	AP↑	AUC↑	F1↑	$AP\uparrow$	AUC↑			
Vanilla baselines									
RNN	0.247	0.322	0.527	0.733	0.710	0.514			
LSTM	0.289	0.404	0.595	0.750	0.805	0.634			
TCN	0.345	0.341	0.548	0.839	0.708	0.524			
Graph attention (GA) baselines									
RNN + GA	0.168	0.410	0.597	0.835	0.758	0.591			
LSTM + GA	0.283	0.389	0.604	0.796	0.783	0.606			
TCN + GA	0.253	0.389	0.602	0.739	0.807	0.637			
This paper									
MTD-GNN (Ours)	0.594	0.607	0.768	0.839	0.820	0.688			

Action Genome

CLEVRER

	Im	nage	Video		
	R@20↑	R@50↑	R@20↑	R@50↑	
With ground-truth	detections				
VRD	24.92	25.20	24.63	24.87	
Freq Prior	45.50	45.67	44.91	45.05	
Graph R-CNN	23.71	23.91	23.42	23.60	
MSDN	48.05	48.32	47.43	47.67	
IMP	48.20	48.48	47.58	47.83	
RelDN	49.37	49.58	48.80	48.98	
MTD-GNN (Ours)	50.09	50.09	49.54	49.54	
Without ground-tru	ith detection	ons			
MTD-GNN (Ours)	46.49	46.49	46.85	46.85	

Qualitative Results

Conclusions

MTD-GNN can readily account for temporally-dynamic video graphs, making it more suitable for real-world scenarios with dynamic scenes

Experiments on CLEVRER and Action Genome show that our attention-based approach can model dynamic relations in graphs

Modelling multiple relations simultaneously can be beneficial when predicting individual relations

