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Introduction

e DeepFake generation and
detection are booming.

e However, explainability
is often left behind.

e EXisting explanation metrics measure faithfulness and correctness
with respect to the model but ignore the user perspective, which is
left to subjective qualitative evaluation.

e \We introduce quantitative metrics for evaluating explanations from
the human perspective, both visual quality and informativeness.

e Using these metrics, we compare existing approaches to improve
explanation heatmaps and discuss their effectiveness.

Proposed metrics

Visual quality
How interpretable is the explanation heatmap to humans?

Smoothness

High-frequency cues, e.g. texture imperfections, are harder to perceive.
An explanation h with low Total Variation appears smoother (low-freq).
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Spatial locality

Explanations that focus on many spatially-distant details are ambiguous.

We express the locality of an explanation through its spatial covariance.
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Sparsity

A few highly important regions are more informative than many mildly
important ones. The Gini Index is used to measure such sparsity:
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Manipulation detection

Does the explanation focus on the forged parts?

Explanations should overlap with manipulated areas. For better control,
we recombine (real, fake) pairs and limit the forgery to a specific area.
Then we can evaluate weakly-supervised manipulation detection.

Two examples of part-specific manipulation:semantic parsing, real video, fake video
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Evaluation

Overview of existing techniques
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Input preprocessing Activation regularization

Total Variation loss to induce
smooth neuron activations.
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Architecture design

Gaussian filtering to remove
high-frequency artifacts.
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Data augmentation

/
~

NS

Cutout augmentation to capture Different inductive biases
more diverse manipulation cues. iIn CNN and transformers.
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Let’s evaluate them using our metrics
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Observations

e Low-pass filtering the input videos does not improve explanation
smoothness, contrary to what observed for images in previous work.

e Regularizing activations yields smoother (low TV) and sparser
(high Gini Index) explanations, but hinders classification accuracy.

e Cutout augmentation results in better generalization from DFDC to
DFD and better manipulation detection. Little effect on other metrics.

e Compared to the CNN baseline, the MVIT transformer produces
smoother and sparser explanations that also perform well for
manipulation detection. Little effect on spatial locality.

User presentation
How to present a heatmap to users? Rare, medium, or well-done?

In a small study, users preferred the most structured
visualizations (blob detection, semantic aggregation).
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The post-processing techniques in our user study. From top to bottom: a simple blur filter to smoothen the heatmap,
a single gaussian approximation, the largest blobs of relevance, an aggregation based on semantic face parsing,




