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Supplementary Material

A Datasets

A.1 DeepFake Detection Challenge

The DFDC dataset was released as part of the homonymous Kaggle challenge [21]. It con-
tains approximately 120k videos, the majority of which are DeepFakes created with different
manipulation methods. The dataset comes in different variants of compression quality, which
are mostly relevant for training robust classifiers and assessing detection performance. For
an analysis of explanation quality, we choose to work on high-quality videos where we ex-
pect manipulation artifacts to be more prominent. Table 2 reports how many videos are used
for training, validation, testing and explanation evaluation.

Preprocessing. The videos from the dataset might contain one or more faces. Of these,
only one is manipulated in the case of “fake” videos. For the purpose of training the Deep-
Fakes classifier, each video is preprocessed as follows:

1. Videos are spatially resized with padding so that each frame is 640×640 pixels;
2. MTCNN is applied every 5 frames, which outputs rectangular bounding boxes tightly

cropped around all faces in a frame
3. Face detections are linked across frames using a greedy overlap-based heuristic; namely,

if two bounding boxes overlap with IoU > 0.5 they are considered the same face;
4. The longest consecutive sequence of linked boxes is considered the main face and is

assumed to be the target for DeepFake manipulation, all other boxes are discarded and
the video is clipped to the frames containing the main face;

5. For intermediate frames where MTCNN was not applied, a bounding box for the main
face is created by linearly interpolating the corners of the two closest boxes;

6. Boxes are expanded by 1.5× to capture more of the hair, neck and background
7. All frames belonging to the main face sequence are cropped according to their box;

rectangular crops are resized to 224×224 and used for training;
8. BiSeNet is applied every 5th frame of a 512×512 version of the aforementioned video,

the probabilistic output of BiSeNet is resized with bilinear interpolation to match the
original size and then the most likely face part is selected.

Classification. For training, validation, and testing, each video is processed separately.
This means that fake videos will not be perfectly aligned with the corresponding real video,
neither in space nor in time. Also, it means that detection and parsing might fail on some
fake videos, due to the low quality of the manipulation. While this can hinder training, it
also represents a realistic scenario where unseen videos are submitted to a trained classifier.

Expalantion evaluation. Explanation metrics based on manipulation detection require
perfectly-aligned pairs of real-fake videos. Therefore, face detection and parsing are per-
formed on real videos and applied identically to all corresponding fake videos. Since the
pairing between real and manipulated videos is only given for the training split of DeepFake
Detection Challenge, and only some videos are perfectly aligned, we use an held-out subset
of the training split consisting of 230 fake videos created from 100 real videos.
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A.2 DeepFake Detection Dataset
The DeepFake Detection Dataset [57] is constructed by recording actors in various situations
and then applying face-swapping DeepFake techniques to the videos. The dataset contains
a large number of videos, but only a limited number of them are perfectly aligned and can
be used for evaluating explanations on part-based manipulation detection. With respect to
the classification task, this dataset is never used during training and it represents a good
benchmark for out-of-distribution generalization. Table 2 reports the number of videos used
to evaluate classification performance and explanation metrics. The videos are preprocessed
in the same way as DFDC. For manipulation detection, perfect alignment is available for 107
fake videos created from 37 real ones.

Table 2: Dataset sizes: number of real and fake videos contained in each dataset and split.
DFDC is used to train all classifiers in this work, to report classification metrics, and to
evaluate explanation metrics. DFD is only used for testing and explanation evaluation.

DFDC DFD
Real Fake Real Fake

Train 19143 99953 - -
Validation 1975 1968 - -

Test 2479 2486 37 107
Explanation 100 230 37 107
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B Classification performance
We report relevant classification metrics for the test split of DFDC in Table 3 and for a
subset of DFD in Table 4. In addition to cross-entropy loss (LCE) and area under the receiver
operating characteristic curve (AROC), we also report precision, recall, and F1 scores obtained
when the model output is binarized with a threshold of 0.5. Furthermore, we report average
precision (AP), i.e. the area under the precision-recall curve as the classification threshold
changes. For each metric and configuration described in Section 3.2 and Section 4, we report
mean and standard deviation of 3 runs.

Table 3: Classification metrics for DFDC, test split. For each configuration and metric, mean
and standard deviation of 3 runs are reported. For all metrics except the LCE loss, values are
given in percentage and a higher value indicates a better result.

LCE ↓ Precision ↑ Recall ↑ F1 ↑ AP ↑ AROC ↑
avg std avg std avg std avg std avg std avg std

S3D Baseline 0.447 0.036 80.89 1.82 82.27 4.01 81.50 1.17 88.79 2.19 89.02 1.08
S3D Bilateral 0.696 0.003 54.00 0.15 32.06 8.47 39.91 6.74 52.75 0.58 54.24 0.67
S3D Gaussian 0.542 0.031 78.49 1.51 64.26 2.89 70.65 2.16 80.20 3.30 81.77 2.33
S3D TV Loss 0.460 0.027 78.68 1.53 81.04 3.50 79.82 2.12 88.24 1.78 87.41 1.88
S3D Cutout 0.481 0.037 78.39 0.73 82.72 4.10 80.46 1.87 86.42 3.56 87.19 2.14
MViT 0.430 0.004 83.64 0.28 94.30 1.46 88.65 0.57 96.59 0.32 96.38 0.38

Table 4: Classification metrics for DFD. For each configuration and metric, mean and stan-
dard deviation of 3 runs are reported. For all metrics except the LCE loss, values are given in
percentage and a higher value indicates a better result.

LCE ↓ Precision ↑ Recall ↑ F1 ↑ AP ↑ AROC ↑
avg std avg std avg std avg std avg std avg std

S3D Baseline 0.694 0.080 72.48 5.55 61.64 2.81 66.59 3.73 82.88 2.67 80.24 2.31
S3D Bilateral 0.746 0.006 42.37 0.56 26.97 2.51 32.94 2.05 43.90 0.00 45.82 0.29
S3D Gaussian 0.760 0.055 60.51 1.77 49.03 12.73 53.66 8.34 66.03 2.37 66.42 0.90
S3D TV Loss 0.698 0.038 65.21 2.03 66.79 7.17 65.90 4.25 77.66 3.72 75.75 3.59
S3D Cutout 0.655 0.065 72.48 5.26 59.95 4.25 65.44 1.97 82.23 0.91 79.59 0.48
MViT 0.513 0.015 74.75 1.24 83.41 3.50 78.83 2.12 91.73 1.70 90.04 1.79
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C Training details

C.1 High-frequencies smoothing
For models trained with smoothing preprocessing, either Gaussian blur or bilateral filtering
are applied. Gaussian blur is applied at the video level using a spatial standard deviation of
0.8 and a temporal standard deviation of 0.5. Bilateral filtering is applied per-frame using a
spatial standard deviation of 2 and a color range standard deviation of 0.1. These values are
empirically chosen so that the filtered videos remain qualitatively similar to the original ones
and that common DeepFake artefacts are still visible.

C.2 Default video augmentation
For all models, color augmentations are applied to training videos to improve generalization.
Each video is augmented with probability 0.5. If the video is augmented, one of the follow-
ing transformations is chosen with equal probability: grayscale conversion, RGB shifting,
gamma shifting, contrast limited adaptive histogram equalization, hue, saturation and value
shifting, brightness and contrast shifting.

C.3 Cutout
When cutout is enabled, each video is augmented with cutout with probability 0.5. Cutout
acts on a 64× 64 region of the video selected with uniform probability. Once a mask is
selected, its contents are blurred with a strong Gaussian filter (standard deviation 4).

C.4 Architectures and training details
Multiscale S3D. The S3D architecture consists of several inception blocks using separable
3D convolution layers. We use a model pretrained on Kinetics 400 as the backbone feature
extractor for the DeepFake classifier. On top of the original architecture, we add shortcut
connections from intermediate layers to the classification head,to allow easier access to mul-
tiscale features which might be relevant for the task. Specifically, we collect the input acti-
vations of the 2nd, 3rd, 4th and 5th pooling layers. These activations are first average-pooled
to the size of the smallest one, concatenated, processed through 1× 1× 1 convolution, and
eventually pooled into a 128-dimensional feature vector. The classification head is a simple
2-layer MLP with output size of 2 and softmax activation.

During one epoch of training, real videos are sampled more than once to match the num-
ber of fake videos in the training set. From each video, a clip of 64 consecutive frames is
extracted at random. Videos shorter than 64 frames are padded by appending black frames.
No spatial cropping is performed since the videos already contain centered faces. The op-
timizer processes mini-batches of 32 videos at the time. The learning rate of the Adam
optimizer is set to 10−4 for pretrained parameters and to 10−3 for the classification head. An
additional weight decay loss is applied to all parameters except biases with strength 10−5.

For validation, only the first 64 frames of each video are considered and no augmen-
tations are applied. Training runs for 5 epochs, unless validation loss stops decreasing, in
which case early stopping is applied. The results reported in the tables are relative for videos
in the training set. For these, we average the output probabilities of 5 equally-spaced 64-
frames clips from each video.
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Multiscale ViT. As an alternative to the 3D CNN backbone, we experiment with a trans-
former architecture. Specifically, we use a Multiscale Vision Transformer that combines
attention layers with multiscale hierarchical processing. For this model, we maintain the
original architecture except for the classification head that is modified to output 2 classes.
Similarly to S3D, the weights are initialized from a model pretrained on Kinetics 400.

Training, validation and testing follow the default settings from the authors. Namely, the
learning rate follows a cosine annealing schedule without warm-up, random temporal crops
of 16 frames are selected from each training video, multiple temporal crops are considered
for testing, spatial cropping is disabled.

Compute resources. All models are trained on a single machine equipped with 4 NVIDIA
V100 GPUs with 32GB of RAM each, which allow for large batch sizes. Once trained, the
model can be ran for both inference and explanations on more modest hardware, e.g. a single
GPU environment with 12GB of RAM.
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D Explanation metrics

This section details how the explanation metrics introduced in Section 3.2 are computed in
practice using discretized videos, masks and heatmaps. Furthermore, Table 5 and Table 6
report the metrics for all variations considered in this work as the average and standard
deviation of 3 runs each.

The main text uses a compact notation where videos are defined as a mapping from the
discretized grid G = {1, . . . ,T}× {1, . . . ,H}× {1, . . . ,W} to RGB pixel values. For this
appendix, we choose a more explicit notation based on tensors. We remark the equivalence
between the two notations since any function f : G → R+ can be uniquely represented as a
T×H×W tensor whose element at (t,h,w) is f (t,h,w). In this context, it is useful to define
the derivative and integral operators ∇ and

∫
as:

(∇ f (ρρρ))i=1,2,3 = f (ρρρ + eeei)− f (ρρρ), (6)∫
G

f dλ =
1

T HW ∑
ρρρ∈G

f (ρρρ), (7)

where the vector ρρρ = (t,u,v) denotes the pixel coordinates, and the vectors eeei are the usual
orthonormal basis i.e. (ei) j = δi j.

D.1 Total variation

Total variation is used to measure the smoothness of a heatmap and is defined as:

TV(h) =
1

T HW ∑
ρρρ∈G

∇h(ρρρ), (8)

where the discrete gradient ∇h at coordinates ρρρ = (t,u,v) is computed as:

|h(t,u,v)−h(t +1,u,v)|+ |h(t,u,v)−h(t,u+1,v)|+ |h(t,u,v)−h(t,u,v+1)| (9)

D.2 Variance volume

To measure the spatial localization of the heatmap, we first compute its mean and variance:

µµµ = ∑
ρρρ∈G

ρρρh(ρρρ), (10)

ΣΣΣ = ∑
ρρρ∈G

(ρρρ−µµµ)(ρρρ−µµµ)T h(ρρρ), (11)

where the vector ρρρ = (t,u,v)T represents pixel coordinates. Then, to summarize the 3× 3
variance matrix as a scalar, we consider its volume given by the determinant |det(ΣΣΣ)|. Larger
volumes correspond to more spread out heatmaps, while smaller values indicate more local-
ized explanations. Importantly, this metric is particularly indicated for unimodal heatmaps
that focus around a single location of the video.
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D.3 Gini Index

The Gini Index was initially introduced as an economic indicator of wealth distribution [29],
but it is considered a good measure of sparsity due to its properties [31]. The Gini Index of
an heatmap measures is defined as:

G =
2

T HW
∑i i ·h(ρρρ iii)

∑i h(ρρρ iii)
− T HW +1

T HW
, (12)

with the indices i = 1, . . . ,T HW that select pixel coordinates such that h(ρρρ i) ≤ h(ρρρ i+1).
Notably, the “sparsity” measured by the Gini Index refers to the scalar importance values of
each pixel and not their location in the heatmap. The heatmap will have a high Gini Index
if most of the explanation mass is concentrated in few highly-relevant pixels while all other
pixels have low relevance.

D.4 Faithfulness

Faithfulness is generally used to compare explanation methods on the basis of how closely
they identify portions of the input that are meaningful for the classifier and a particular
decision. Faithfulness is measured using the deletion score, which represents the area under
the curve traced by the confidence in p(FAKE|v) as pixels are removed from the video in
decreasing order of relevance. Considering the large amount of pixels in a video, the curve
is approximated by removing several pixels in one step. Specifically, we consider the sorted
values of an heatmap h and group them in 25 bins. These bins do not necessarily contain the
same amount of pixels, but the total relevance in each bin is approximately the same.

In this work, we are interested in the properties of explanations rather than of explanation
methods. However, a faithful explanation method is a prerequisite for further evaluation
of explanation quality. As a preliminary step, we compare the four explanation methods
discussed in Sec. 3.1 and choose the most faithful one based on its deletion scores on the
baseline model. The following hyperparameters are used: in SmoothGrad, gradients are
averaged over 25 randomly perturbed videos with a noise parameter equal to 0.15 of the
RGB range; in Integrated Gradients the path integral is calculated w.r.t. a black video baseline
using 25 interpolation steps.

With respect to fake videos in DFDC and DFD, the four methods achieve the following
average deletion scores: Sensitivity 42.54%, Gradient×Input 43.68%, SmoothGrad 41.25%,
Integrated Gradients 43.77%. Therefore, SmoothGrad has the lowest deletion score of the
four (p value of paired one-sided t-test < 10−5) and is then employed throughout all experi-
ments.

D.5 Manipulation detection

The ability to detect and localize manipulations is measured by considering videos created
by overlaying a portion of a fake video vF to its corresponding original video vR. The blend-
ing mask is obtained by selecting a face part p ∈ {mouth,nose,eyes} from those extracted
with BiSeNet [90]. The explanation heatmap can then be compared with the ground-truth
manipulation mask to determine whether the model is focusing on manipulated regions of
the video. Without loss of generality, only the first 64 frames of each video are considered
in all manipulation detection evaluations.
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For the main metrics, we measure the precision of 100 most-relevant pixels in the heatmap,
and the percentage of heatmap contained in the ground-truth manipulation mask. This
approach has the advantage of being threshold independent, as opposed to binarizing the
heatmap using an arbitrary threshold and computing metrics such as Intersection over Union.
Notably, both metrics penalize explanations that focus outside the ground-truth mask, but
can not distinguish whether the heatmap clusters around an actual manipulation artefact or
is uniformly scattered inside the mask (Figure 6).

Table 5: Explanation metrics for DeepFake Detection Challenge (DFDC). Mean and stan-
dard deviation of 3 independent classifiers whose decisions are explained using SmoothGrad.

TV ↓ 3√σ ↓ Gini ↑ MIN ↑ P100 ↑
avg std avg std avg std avg std avg std

S3D Baseline 0.285 0.006 814.4 31.0 74.93 1.00 17.43 0.38 29.43 1.34
S3D Bilateral 0.428 0.044 1372.6 268.8 67.89 3.50 12.15 3.32 13.47 8.77
S3D Gaussian 0.292 0.004 841.4 15.1 75.55 0.44 17.38 0.51 26.31 1.19
S3D TV Loss 0.256 0.003 726.3 54.8 77.40 1.97 17.68 1.00 34.46 1.85
S3D Cutout 0.296 0.005 839.0 40.2 75.26 1.40 17.76 0.63 30.48 1.10
MViT 0.246 0.013 808.3 17.1 80.42 0.36 22.11 0.64 36.03 3.43

Table 6: Explanation metrics for DeepFake Detection Dataset (DFD). Mean and standard
deviation of 3 independent classifiers whose decisions are explained using SmoothGrad.

TV ↓ 3√σ ↓ Gini ↑ MIN ↑ P100 ↑
avg std avg std avg std avg std avg std

S3D Baseline 0.261 0.009 827.6 34.4 74.84 0.74 17.09 0.15 28.62 0.80
S3D Bilateral 0.413 0.061 1426.3 346.3 68.92 4.95 13.47 4.25 16.10 16.48
S3D Gaussian 0.273 0.011 799.2 11.0 76.54 0.17 16.83 0.82 26.87 1.16
S3D TV Loss 0.244 0.005 742.1 45.3 77.08 1.70 17.20 0.92 30.09 2.72
S3D Cutout 0.274 0.004 838.7 46.5 75.33 1.47 16.87 0.31 29.22 0.96
MViT 0.250 0.016 834.5 27.3 80.02 0.10 20.35 0.50 29.81 3.06
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E Additional examples
Additional examples of semantic parsing, manipulation detection (Section 3.2.2), and expla-
nation post-processing for the user study (Section 4.2) are shown below.

Figure 4: User study visualization: real video, fake video, enhanced heat-map, Gaussian
matching, blob detection, semantic aggregation.

Figure 5: Example of semantic parsing as performed by BiSeNet [90] and of an alternative
version of video cutout (Section 3.2.2) where heavy blurring is applied dynamically to a
semantic region instead of a fixed square.
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Figure 6: Additional examples for manipulation detection. Random frames from random
videos. From left to right: original, part-based manipulated video, heatmap.


