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Abstract

Recent advances have indicated the strengths of self-supervised pre-training for im-
proving representation learning on downstream tasks. Existing works often utilize self-
supervised pre-trained models by fine-tuning on downstream tasks. However, fine-tuning
does not generalize to the case when one needs to build a customized model architecture
different from the self-supervised model. In this work, we formulate a new knowledge
distillation framework to transfer the knowledge from self-supervised pre-trained models
to any other student network by a novel approach named Embedding Graph Alignment.
Specifically, inspired by the spirit of instance discrimination in self-supervised learning,
we model the instance-instance relations by a graph formulation in the feature embed-
ding space and distill the self-supervised teacher knowledge to a student network by
aligning the teacher graph and the student graph. Our distillation scheme can be flexibly
applied to transfer the self-supervised knowledge to enhance representation learning on
various student networks. We demonstrate that our model outperforms multiple represen-
tative knowledge distillation methods on three benchmark datasets, including CIFAR100,
STL10, and TinyImageNet. Code is here: https://github.com/yccm/EGA.

1 Introduction
Self-supervised learning models are recently shown to be successful unsupervised learners
that could greatly boost representation learning on different downstream tasks [5, 7, 8, 15, 21,
32, 33, 35]. By fine-tuning a self-supervised pre-trained model, self-supervised knowledge
can often bring more advanced model performance in a wide variety of downstream tasks,
such as image classification, object detection, and instance segmentation [9, 15]. However,
fine-tuning a self-supervised model could be undesirable in several aspects. First, fine-tuning
only generalizes when using the same network architecture for the downstream task, thus re-
quiring self-supervised pre-training to be performed for each customized network. Second,
fine-tuning does not allow model compression, as it is infeasible to achieve knowledge trans-
fer to a small lightweight network.
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teacher graph
by a self-supervised teacher model

Embedding Graph Alignment

student graph
by a supervised student model

Fig. 1: We consider modeling the instance-instance correlations by constructing graphs in the embed-
ding space and transferring the graph structural knowledge from a self-supervised teacher model to a
supervised student model by aligning the teacher and student graphs.

In this work, to leverage the strength of self-supervised pre-trained networks, we explore
the knowledge distillation paradigm [4, 6, 16] rather than using fine-tuning to transfer knowl-
edge from a self-supervised pre-trained teacher model to a small, lightweight supervised
student network. To facilitate research in this regime, we first establish a knowledge distilla-
tion benchmark to test knowledge distillation upon various combinations of self-supervised
teacher networks and supervised student networks. Given that the most representative self-
supervised models are often trained to learn discriminative representations through instance-
wise supervision signals [5, 7, 8, 15, 17, 21, 24, 32, 33, 35, 37], we hypothesize that these
self-supervised teacher models offer a good structural information among different instances.
To distill such fine-grained structural information learned by a self-supervised pre-trained
model, we propose to model the instance-instance relationships by a graph structure in the
embedding space and distill such the structural information among instances by aligning
the teacher graph and the student graph – named as Embedding Graph Alignment (EGA),
as shown in Figure 1. Although our approach is being motivated to distill the structure of
instance-instance relationships encoded in a self-supervised teacher model, our proposed
model can also generalize well to distill knowledge from s supervised teacher model, there-
fore serving as a generic distillation scheme.

Our contribution is three-fold: (1) We propose a new knowledge distillation method
called Embedding Graph Alignment (EGA), which can transfer the instance-wise structural
knowledge from a self-supervised teacher model to a supervised student model by aligning
the teacher graph and student graph in the embedding space. (2) We establish a comprehen-
sive benchmark on three image classification datasets (CIFAR100, STL10, TinyImageNet)
for studying knowledge distillation upon various self-supervised teacher models, compar-
ing our method extensively to multiple state-of-the-art knowledge distillation approaches.
(3) We demonstrate the superiority of our model under a variety of evaluation setups, in-
cluding using different combinations of teacher and student models, using different training
strategies in knowledge distillation, and using both self-supervised pre-trained network and
supervised pre-trained network as the teacher models.

2 Related Work

Knowledge distillation is a machine learning paradigm that employs a large teacher net-
work or an ensemble of networks to guide the learning of a small, lightweight student net-
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work [4, 6, 16]. By mimicking the output distributions or the representations learned by a
teacher model, the student network is often regularized with additional supervision signals
to achieve superior model generalization, whilst such supervision is often computed as loss
functions upon certain training targets. For instance, to mimic the teacher’s output distribu-
tions, the first knowledge distillation (KD) approach introduces a cross-entropy loss or KL
divergence computed on the soft targets from a teacher model [16]. To mimic the represen-
tations from a teacher model, the latter work FitNet utilizes a regression loss to align the
intermediate representations between the teacher and the student networks [30]. The recent
following works formulated more advanced and effective loss formulations for knowledge
distillation [26, 27, 28, 34, 36], such as aligning representations of attention maps [36],
matching the feature distributions with probabilistic models [27], mimicking the similar-
ity scores of feature activations [34], transferring the distance-wise and angle-wise relations
[26], or contrasting the representations between teacher and student [32]. Another line of fol-
lowing works explore to distill the knowledge learned from other datasets or data modalities
[1, 2, 3, 10, 13, 13], such as distilling the knowledge across the audio and visual data modal-
ities [1, 10]. In contrast to these existing works, we investigate distillation to exploit the
knowledge captured from self-supervised models, and formulate a graph structure to encode
the fine-grained structural instance-instance relationships learned in a self-supervised model.
Our newly proposed Embedding Graph Alignment scheme particularly enables transferring
the fine-grained structural semantics from the self-supervised teacher to the student network.
Self-supervised learning (SSL) is a prevalent learning paradigm that drives model training
by designing a proxy protocol to construct pseudo label supervision. By formulating unsu-
pervised surrogate losses with free labels, SSL can learn meaningful visual representations
in a fully unsupervised manner. One line of works seek for designing self-supervised pre-
text tasks, including predicting the expected pixel values of an output image [19, 38, 39],
solving a surrogate proxy task such as predicting rotations [12], scale and tiling [23], and
patch orderings [11, 22, 31]. Another line of works propose to learn discriminative repre-
sentations through instance-wise supervision signals [5, 7, 8, 15, 17, 21, 24, 32, 33, 35, 37],
as most represented by contrastive learning methods [7, 14, 15, 25] such as SimLR [7] and
MoCo [15]; whilst the general idea of these works is to enforce instance-wise invariance to-
wards different data augmentation applied on the same input image. More recently, such an
instance-wise alignment scheme is further extended for training visual and language models
jointly to capture the high-level semantics and learn visual representations in an unsuper-
vised fashion [18, 29]. In this work, for the first time, we explore the solutions to leverage
the self-supervised knowledge by distillation rather than simple fine-tuning as adopted in
most existing works in SSL. For this aim, we establish a new benchmark using various
self-supervised teacher networks proposed in the recently advanced CLIP model [29], and
propose an effective distillation scheme that generalizes well to distill the knowledge from
different types of self-supervised teacher networks.

3 Distillation by Embedding Graph Alignment (EGA)
Our goal is to distill the knowledge learned from a self-supervised pre-trained teacher model
to enhance the visual representation learning of a supervised student model on a visual recog-
nition task. As self-supervised learners are often trained to discriminate individual image
instances [7, 9, 15, 35], the fine-grained knowledge encoded in a self-supervised teacher net-
work can be distilled by learning to mimic the instance-instance relationships in the feature
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Fig. 2: To distill the knowledge from the self-supervised teacher network, we first construct the teacher
graph and the student graph based on a batch of embeddings to capture the instance-instance correlation
structure in the feature embedding space (Section 3.1). To transfer the structural correlation informa-
tion learned by the teacher network to the student network, we align the teacher graph and the student
graph by jointly optimizing an edge matching constraint and a node matching constraint (Section 3.2).

embedding space. Figure 2 presents the model overview of our proposed Embedding Graph
Alignment (EGA) approach for distilling the knowledge from a self-supervised teacher net-
work to a supervised student network. Given a batch of B image samples {I1, I2, ..., IB},
we first feed the input samples to the teacher network and the student network respectively,
resulting in a batch of teacher feature embeddings {xt1 ,xt2 , ...,xtB} and a batch of student
feature embeddings {xs1 ,xs2 , ...,xsB}. To represent the geometry and correlations among
different feature embeddings, we construct a graph G in the embedding space to encode
the instance-instance relationships (Section 3.1). For distilling the knowledge, we align the
teacher graph and the student graph by jointly optimizing an edge matching constraint and
a node matching constraint (Section 3.2), which work synergistically to align the features
between teacher and student networks, and transfer the instance-instance correlations from
the teacher to the student.

3.1 Graph Construction

To capture the fine-grained structural information in the embedding space, we construct a
graph G = (X ,E) to encode the structural correlations among a batch of embeddings, where
X refers to a set of nodes (also known as vertices), and E represents a set of edges that encode
the structural correlations among different instances: E ⊆

{
(xi,x j) | (xi,x j) ∈ X and xi ̸= x j

}
.

In the following, we detail how we compute the node embedding and the edge to construct
the graph G in the embedding space.
Node. To learn the node embedding, we feed the extracted features from the teacher and
student networks to individual node embedding layers (which are parameterized as linear
projection layers). This also allows the different teacher and student networks to be deployed
in our framework without checking which network needs an extra projection layer. Let
ft ∈ RDt and fs ∈ RDs denote the feature vectors extracted directly from the teacher and
student networks. We pass ft and fs to the two node embedding layers to obtain the projected
embeddings xt ∈ RD and xs ∈ RD, where D denotes the dimensionality of the embedding
space shared between the teacher and the student models. The embeddings xt , xs are utilized
as the node representations in the teacher graph Gt and the student graph Gs, which capture
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the high-level semantic information of each input image. To distill knowledge from the
teacher to the student model, an intuitive solution is the align the node embeddings xt , xs
directly through certain learning constraints, which we will detail in Section 3.2.
Edge. To capture the structural correlations among different instances, we propose to derive
each edge in the graph to encode the correlation between every pair of images among the
same batch based on the Pearson’s correlation coefficient (PPC) – also known as the Pearson
product-moment correlation coefficient (PPMCC). Formally, given n pairs of data points
denoted as {(x1,y1) , . . . ,(xn,yn)} where xi ∈ R1, the correlation coefficient is defined as:

rxy
def
=

∑
n
i=1 (xi − x̄)(yi − ȳ)

(n−1)sxsy
=

∑
n
i=1 (xi − x̄)(yi − ȳ)√

∑
n
i=1 (xi − x̄)2

√
∑

n
i=1 (yi − ȳ)2 (1)

where n is the sample size, xi,yi are the individual data points, x̄, ȳ are the mean, sx and sy
are the standard deviation. We apply the above formula to quantify the correlation between
every pair of node embedding, and construct the edge based on this correlation. Specifically,
given a pair of node embeddings denoted as x and y (where x ∈ RD and y ∈ RD), we can
compute their connected edge in a graph based on Eq. 1, as defined below.

ex,y =
∑

D
i=1 (xi − x̄)(yi − ȳ)√

∑
D
i=1 (xi − x̄)2

√
∑

D
i=1 (yi − ȳ)2 (2)

where D is the feature dimension. ex,y is the edge that connects the two node embeddings x,
y, and quantifies their relationship through their correlation. Based on Eq. 2, one can build
the teacher graph for a batch of node embeddings {xt1 ,xt2 , ...,xtB} by computing the edge
between every pairs of node embeddings, while the same procedure can be applied for build-
ing the student graph. The constructed graph, therefore, encodes the pairwise correlations
among all the instances in the same batch. We will elaborate on how to exploit this structural
information in the following.

3.2 Embedding Graph Alignment
As motivated above, to distill the knowledge from a self-supervised teacher network, we
aim to enforce a student network to mimic the fine-grained instance-wise correlations that
are typically learned by a self-supervised learner. We encode these structural correlations
by constructing the graph in the embedding space, and propose to distill such structural
information by aligning the teacher graph and the student graph: named as Embedding Graph
Alignment (EGA). Below, we first detail how we construct the edge matrix and node matrix,
and describe how we formulate our distillation objectives to match the edges and nodes.
Edge matrix. The edge matrix is formulated based on Eq. 2, which encodes all the pairwise
correlations among a batch of node embeddings X = {x1,x2, ...,xB}. Let ei, j denote the
correlation between the embeddings xi and x j computed with Eq. 2. We can formulate an
edge matrix as:

E(X ,X) = (ei j) ∈ RB×B (3)

where B is the batch size. All the diagonal elements on E are 1, given that its diagonal
represents the self-correlations of each individual embedding. With Eq. 3, we can compute
the edge matrices for both the teacher model and the student model using their batch of node
embeddings: Xt = {xt1 ,xt2 , ...,xtB} and Xs = {xs1 ,xs2 , ...,xsB}. Accordingly, we can write
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their corresponding edge matrices as Et = E(Xt ,Xt) and Es = E(Xs,Xs), which encodes all
the edges in two graphs.
Edge matching. To distill the structural correlation information captured in the teacher
graph, we propose to align the edge matrices of the teacher graph and the student graph. For-
mally, we define an edge matching loss to match the edge information between two graphs,
as written below.

Ledge ≜ ∥Et −Es∥2 (4)

where Ledge explicitly enforces the student network to distill the same structural correlations
learned by the teacher network by aligning the edge matrices Et and Es. Once trained with the
above constraint, the student network is expected to obtain similar relative relations among
different instances in the embedding space.
Node matrix. Although Eq. 4 helps to transfer the structural relations from the teacher to the
student network, it does not explicitly align the individual embeddings between the teacher
and the student networks. To encourage the student to mimic the representations learned by
the teacher network, we propose to align their node embeddings of the same input image.
Specifically, we define a node matrix where each element captures the correlation between
the teacher and the student embeddings. We derive this matrix in a similar manner as our
formula in Eq. 3:

Nst = E(Xt ,Xs) (5)

Conceptually, the node matrix Nst connects the teacher and student embeddings by build-
ing an edge among every pair of teacher and student embeddings to quantify the cross-
correlations between the teacher and student models, which differs from the edge matrices
that quantify the self-correlations among embeddings from the same network.
Node matching. To ensure the embeddings are aligned across the teacher and student net-
works, we impose the following node matching loss to ensure that the correlation between
the teacher and student embeddings of the same input image is high (i.e. close to 1); while
the correlation between different input images is low (i.e. close to 0). For this aim, we
enforce the node matrix from Eq. 5 to align with an identity matrix I, as defined below.

Lnode ≜ ∥Nst −I∥2 (6)

where the node matrix Nst is encouraged to have its diagonal elements as 1 and the rest as 0,
given that the diagonal encodes the correlation between the teacher and student embeddings
of the same input image, and should yield high correlation values close to 1.
Embedding Graph Alignment. To align the teacher and the student graphs, we impose the
embedding graph alignment loss for distillation, which contains two loss terms: the edge
matching loss (Eq. 4) and the node matching loss (Eq. 6), as defined below.

LEGA = Lnode +λLedge (7)

where λ is a hyperparameter to balance two loss terms.

3.3 Model Optimization

Overall objective. Our learning objective includes a standard task objective and an embed-
ding graph alignment loss λEGA for knowledge distillation. We consider image classification

6



in this work and the task objective is a standard cross-entropy loss LCE . The overall objective
can be written as:

L= Lce +λEGALEGA (8)

Given that the teacher network is a self-supervised pre-trained model and it is not optimized
for the downstream target task, we consider two standard distillation strategies to train the
teacher and student networks: (1) mutual learning [40], which optimizes the teacher with
the target objective Lce and the student with the full objective (Eq. 8) simultaneously; (2)
sequential learning [16], which optimizes the teacher and student networks sequentially by
first training the teacher with the task objective Lce and then training the student with the
full objective (Eq. 8). For both strategies, the teacher’s backbone is frozen and only its new
added layers are trained. In our experiments, we find the two strategies perform similarly.
We provide algorithm overviews on these strategies in supplementary.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate on three image classification datasets. CIFAR100 consists of 60,000
32 × 32 colour images, with 50,000 images for training and 10,000 images for testing. It
has 100 classes and each class contains 600 images. STL-10 contains a training set of 5,000
labeled images from 10 classes and 100,000 unlabeled images, and a test set of 8K images.
It has 10 classes and the image size is 96x96. We only use the labeled data for training.
TinyImageNet contains 100,000 colored images of 200 classes, and each class contains
500/50 training/validation images from ImageNet. The image sizes are downsized to 64x64.
Implementation details. We use PyTorch for our experiments. We test different types of
student networks, including resnet8x4, shuffleNetV1, and VGG13. All the extracted image
features from the student network are passed through a node embedding layer (Section 3.1),
which maps each feature vector to a 256-D embedding by a linear projection. We also
test different types of teacher networks, including self-supervised models and supervised
models. Our self-supervised models include ViT-B/32, ViT-B/16 and RN101 [29]; while our
supervised models include RN50, RN101 and WRN-40. Similarly, all the features from the
teacher network are passed through a node embedding layer to get a 256-D embedding. For
data augmentation, we apply standard strategies such as random cropping, random horizontal
flipping, and normalization. For the hyperparameters, we set λ to 0.3 and λEGA as 0.8.
For model training, we adopt the SGD optimizer, with an initial learning rate of 0.05, and
decayed by 0.1 every 30 epochs after the first 150 epochs. The model is trained for 240
epochs with a batch size of 64. For distillation, we consider two training strategies: mutual
learning and sequential learning as mentioned in 3.3.

4.2 Comparing to the State-of-the-Art

Compared methods. We compare our method to multiple representative state-of-the-art
distillation methods. To ensure fair comparisons, we adopt the same network architectures,
the same optimization scheme and the training strategies for all the methods, while using the
customized distillation objectives for different methods. we compare against the following
models: KD [16]: the first distillation method, using soft targets from the teacher to guide the
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Method
Same student different teacher Same teacher different student
ViT-B/32 ViT-B/16 RN101 Resnet8x4 ShuffleNetV1 VGG13

KD[16] 71.55 71.99 64.77 71.55 72.90 75.20
FitNet[30] 73.93 74.13 74.14 73.93 nan 75.56
PKT [27] 73.86 73.55 72.21 73.86 75.31 75.55
RKD[26] 73.34 73.42 73.7 73.34 73.93 76.41
NCE [10] 74.30 74.41 73.69 74.30 73.99 76.42
IRG [20] 75.11 74.72 74.17 75.11 74.79 75.98
CRD[32] 75.73 75.68 75.13 75.73 75.54 76.83
CCL[10] 75.91 76.13 75.08 75.91 76.14 77.68
EGA 76.65 76.30 75.41 76.65 76.24 77.59

Table 1: The teacher and student are trained simultaneously [40]. Best results are bold.

Method
Same student different teacher Same teacher different student
ViT-B/32 ViT-B/16 RN101 Resnet8x4 ShuffleNetV1 VGG13

RKD[26] 73.36 72.43 73.92 73.36 72.62 73.26
CRD[32] 75.51 73.38 74.85 75.51 74.87 77.41
CCL[10] 75.98 39.56 74.22 75.98 76.05 77.54

EGA 76.11 74.02 75.22 76.11 76.74 77.76
Table 2: The teacher and student are trained sequentially [40]. Best results are bold.

student by KL divergence. FitNet [30]: a popular technique that aligns the features between
the teacher and student networks by regression. PKT [27]: a probabilistic distillation model
that matches the probabilistic distributions between the student and teacher by a divergence
metric. RKD [26]: a relational distillation technique that transfers the distance-wise and
angle-wise relations among features from the teacher to student model. IRG [20]: a distilla-
tion approach that models feature space transformation across layers and minimizes its MSE
loss. CRD [32]: a contrastive distillation method that transfers knowledge by aligning the
teacher and student’s representations through instance-wise contrastive learning. CCL [10]:
a recent distillation method to transfer knowledge across heterogeneous networks using a
noise contrastive loss to align teacher and student’s representations and a JSD loss to align
the model predictions

Discussion. Among all the methods above, RKD and IRG are most related to our model
as these are motivated to transfer the relational knowledge learned from the teacher to the
student. However, our method EGA differs from other relational distillation approaches
in multiple aspects: (1) We’re the first to explore distillation from self-supervised teacher
models and establish a new benchmark (Table1&2), while showing better performance on
standard distillation using supervised teacher models (Table3). (2) We formulate graphs
with node embedding layers, Pearson’s correlation coefficients (PPC, Eq.1,2), and match
graphs by enforcing cross-graph node matrix to be identity and aligning edge matrices with
Frobenius norm (Eq.3-6), which greatly differs from these two methods: RKD computes
relations as distances between pairs, angles among triplet and aligns relations; IRG models
feature space transformation across layers and minimizes its MSE loss. (3) Our method
shows more simplicity in implementation and achieves superior performance.

Evaluation on different network architectures. To evaluate how our model performs using
different combinations of teacher and student networks, we deploy distillation using (1) the
same student and different teacher, and (2) the same teacher and different student.

Table 1 shows our results on CIFAR100 with various teacher-student combinations. As
shown, our EGA offers superior model performance in four out of five cases as compared
to the best competitor CCL. When using the teacher and student as “ViT-B/32 + resnet8x4”,
“ViT-B/16 + resnet8x4”, “RN101 + resnet8x4”, and “ViT-B/32 + shuffleNetV1”, EGA ob-
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Method Same student different teacher
RN101 RN50 WRN-40

KD[16] 74.69 74.82 74.77
FitNet[30] 58.73 76.27 75.58
PKT[27] 74.44 75.69 75.30
RKD [26] 72.45 72.25 72.48
NCE[10] 73.62 74.35 72.90
CRD [32] 75.52 75.50 75.84
CCL[10] 75.56 75.53 75.33
EGA 75.77 76.36 75.97

Table 3: Top 1 accuracy(%) of student net-
work on CIFAR100. The teacher and student
are trained simultaneously [40].

Method CIFAR100 STL-10 TinyImageNet
KD [16] 71.55 84.35 54.68
FitNet [30] 76.04 84.15 59.97
PKT [27] 72.51 82.37 58.34
RKD [26] 73.34 83.13 58.15
NCE [10] 74.30 83.96 58.93
CRD [32] 75.73 82.40 60.34
CCL [10] 75.91 84.01 60.84
EGA 76.65 84.15 60.61
EGA + KD 76.49 84.36 61.24

Table 4: Top 1 accuracy (%) of student net-
works on CIFAR100, STL10, TinyImageNet.
Teacher: self-supervised ViT-32 [29]. Student:
resnet8x4. The teacher and student are trained
simultaneously [40].

tains an accuracy of 76.65%, 76.30%, 75.41%, 76.24%, which are much higher than 75.91%,
76.13%, 75.08%, 76.14% by CCL. When using the teacher and student as and “ViT-B/32 +
VGG13”, EGA achieves very similar performance as CCL, obtaining an accuracy of 77.59%
vs 77.68% by CCL which combines NCE and JSD for distillation.

In Table 2, we evaluate the sequential learning strategy of teacher and student in distilla-
tion. When comparing EGA to the top competitors, we find that EGA obtains the best overall
performance among different combinations of teacher and student networks. In particular,
EGA surpasses the best competitor CCL in five out of five cases, obtaining an accuracy of
76.11%, 74.02%, 75.22%, 76.74%, 77.76% when using the teacher and student as “ViT-
B/32+resnet8x4”, “ViT-B/16+resnet8x4”, “RN101+resnet8x4”, “ViT-B/32+shuffleNetV1”,
and “ViT-B/32+VGG13”. Overall, our results in Table 1 and Table 2 indicate that EGA
achieves strong model generalization when using different combinations of teacher and stu-
dent networks, under two different training strategies for distillation. These results collec-
tively show that EGA is capable of distilling self-supervised knowledge in an effective way.

Evaluation on distilling supervised knowledge. We focus on distilling self-supervised
knowledge in this work, given that self-supervised models are cost-effective – they require
no labels but learn good features. However, our model can also generalize to distilling knowl-
edge from self-supervised networks. We evaluate this aspect in Table 3. As shown, our model
EGA achieves the best model performance among all the competitors in all the comparisons,
offering an accuracy of 75.77%, 76.36%, 75.97% vs 75.56%, 75.53%, 75.33% by the com-
petitor CCL when using RN101, RN50, WRN-40 as the supervised teacher network. These
results indicate that our EGA also works well in the scenario where the teacher networks are
trained in a supervised manner.

Evaluation on CIFAR100, STL-10 and TinyImageNet. Table 4 shows our results on three
image classification datasets, which transfer the self-supervised knowledge learned from the
CLIP model [29] to a lightweight student network by training the two networks simulta-
neously. As Table 4 shows, our model GM obtains the overall superior model performance
compared to other strong competitors. When comparing EGA+KD with the recent best com-
petitor CCL which combines two losses (NCE+JSD), we find that EGA+KD outperforms
CCL substantially, obtaining an accuracy of 76.49%, 84.36%, 61.24% on the three datasets
vs 75.91%, 84.01%, 60.84% by CCL.

In Table 5, we evaluate another sequential learning strategy on the three datasets. By
sequential learning, we first pre-train the teacher model on the downstream task and keep
its weights frozen during distillation. As can be seen, when comparing EGA to multiple
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Fig. 3: The learning curves of baseline, EGA w edge matching loss only, EGA w node matching loss
only, EGA on CIFAR100.

top competitors, the superiority of EGA remains the same. Overall, our results in Table 4
and Table 5 show that our model EGA works well for distilling self-supervised knowledge
to boost the classification performance on various downstream image datasets. Moreover,
EGA also works well under different distillation strategies, i.e., training the teacher and
student simultaneously or sequentially. These results show the superior generalizability of
EGA for distilling self-supervised knowledge in different scenarios.

Method CIFAR 100 STL-10 TinyImageNet
RKD [26] 73.36 82.67 58.32
CRD [32] 75.51 78.76 60.82
CCL[10] 75.98 80.41 61.24
EGA 76.11 83.01 61.85

Table 5: Top 1 accuracy (%) of student
networks on CIFAR100, STL10, TinyIm-
ageNet. Teacher: self-supervised ViT-32
[29]. Student: resnet8x4. The teacher and
student are trained sequentially [16]. Best
results are highlighted in bold.

Analyzing the learning dynamics. Figure 3
shows the learning curves of different models on
CIFAR100. We compare the baseline model (only
Lce), edge matching loss model (Lce+λedgeLedge),
node matching loss model (Lce +λnodeLnode) and
our full EGA model. It is interesting to observe
that our EGA is less overfitting on the training
set compared to other models, especially the base-
line. We find that EGA consistently performs best
during training on the test set, obtaining the low-
est error rate. Besides, when adding either Ledge
or Lnode with the Lce, the model outperforms the
baseline, which indicates that these two loss terms are indeed effective. Figure 3 again proves
that our full model formulation EGA performs and generalizes much better than the EGA
variants with a single loss term.

5 Conclusion

In this work, we introduced a new Embedding Graph Alignment (EGA) method for distilling
self-supervised knowledge. To capture the fine-grained instance-wise correlations learned by
the teacher network, we construct graphs to encode the structural information in the embed-
ding space, and perform knowledge distillation by aligning the teacher graph and the student
graph. We evaluated our EGA extensively on multiple image classification datasets in com-
parison to a wide variety of knowledge distillation methods. We show that EGA generalizes
well on different datasets, under different combinations of teacher and student networks, and
performs robustly when using different training strategies for distillation. Our results collec-
tively demonstrate the superiority of EGA as a generic knowledge distillation technique.

Acknowledgement. This work has been partially funded by the ERC (853489-DEXIM) and
the DFG (2064/1–Project number 390727645).
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