

Distilling Knowledge from Self-Supervised Teacher by Embedding Graph Alignment

Yuchen Ma*1, Yanbei Chen*1, Zeynep Akata1,2,3

¹University of Tübingen, ²MPI for Informatics, ³MPI for Intelligent Systems *Equal contribution. The work was done when Yuchen Ma was enrolled in the MSc program at the University of Heidelberg.

Introduction

Task Introduction Knowledge Distillation Original training Knowledge distillation Teacher (expert of target task) Train task directly Target task Contribution:

- Propose a new knowledge distillation method to transfer the instance-wise structural knowledge.
- Establish a comprehensive benchmark on three image classification datasets Demonstrate the superiority of our model under a variety of evaluation setups.

Motivation

Goal: Learn visual representation by knowledge distillation

- Modeling the instance-instance correlations
 - Transferring the **graph structural knowledge**Use self-supervised knowledge

Model Overview

- Construct the teacher graph and the student graph
- Align the teacher graph and the student graph
- Jointly optimize an edge matching constraint and a node matching constraint.

Graph Construction

Node: Feed the extracted features to individual **node** embedding layers

Edge

based on the Pearson's correlation coefficient (PPC)

Edge matrix: encode the correlation between every pair of images among the same batch

Student Graph

Embedding Graph Alignment

(b) Embedding Graph Alignment

Edge Matching

 $N_{st} = E(X_t, X_s)$

- Edge matching loss $\mathcal{L}_{edge} \triangleq ||E_t - E_s||_2$
- Node matching loss
- $\mathcal{L}_{node} \triangleq ||N_{st} \mathcal{I}||_{2}$
- Distillation loss $\mathcal{L}_{EGA} = \mathcal{L}_{node} + \lambda \mathcal{L}_{edge}$
- - Training loss
 - $\mathcal{L} = \mathcal{L}_{ce} + \lambda_{EGA} \mathcal{L}_{EGA}$

Experiment

Evaluation on different network architectures

Method	Same student different teacher			Same teacher different student		
	ViT-B/32	ViT-B/16	RN101	Resnet8x4	ShuffleNetV1	VGG13
KD[16]	71.55	71.99	64.77	71.55	72.90	75.20
FitNet[30]	73.93	74.13	74.14	73.93	nan	75.56
PKT [27]	73.86	73.55	72.21	73.86	75.31	75.55
RKD[26]	73.34	73.42	73.7	73.34	73.93	76.41
NCE [10]	74.30	74.41	73.69	74.30	73.99	76.42
IRG [20]	75.11	74.72	74.17	75.11	74.79	75.98
CRD[32]	75.73	75.68	75.13	75.73	75.54	76.83
CCL[10]	75.91	76.13	75.08	75.91	76.14	77.68
EGA	76.65	76.30	75.41	76.65	76.24	77.59

The teacher and student are trained simultaneously

Method	Same student different teacher			Same teacher different student		
	ViT-B/32	ViT-B/16	RN101	Resnet8x4	ShuffleNetV1	VGG13
RKD[26]	73.36	72.43	73.92	73.36	72.62	73.26
CRD[32]	75.51	73.38	74.85	75.51	74.87	77.41
CCL[10]	75.98	39.56	74.22	75.98	76.05	77.54
EGA	76.11	74.02	75.22	76.11	76.74	77.76

Evaluation on supervised model Same student different teacher

RN101	RN50	WRN-40
74.69	74.82	74.77
58.73	76.27	75.58
74.44	75.69	75.30
72.45	72.25	72.48
73.62	74.35	72.90
75.52	75.50	75.84
75.56	75.53	75.33
75.77	76.36	75.97
	74.69 58.73 74.44 72.45 73.62 75.52 75.56	74.69 74.82 58.73 76.27 74.44 75.69 72.45 72.25 73.62 74.35 75.52 75.50 75.56 75.53

Visualizing embeddings with t-SNE

Evaluation on different dataset

Method	CIFAR100	STL-10	TinyImageNe
KD [16]	71.55	84.35	54.68
FitNet [30]	76.04	84.15	59.97
PKT [27]	72.51	82.37	58.34
RKD [26]	73.34	83.13	58.15
NCE [10]	74.30	83.96	58.93
CRD [32]	75.73	82.40	60.34
CCL [10]	75.91	84.01	60.84
EGA	76.65	84.15	60.61
EGA + KD	76.49	84.36	61.24

EGA	76.11	83.01	61.85
CCL[10]	75.98	80.41	61.24
CRD [32]	75.51	78.76	60.82
RKD [26]	73.36	82.67	58.32
1-1etiloo	OH THE TOO	OIL IO	1 my mager re

Analyzing the learning dynamics

[10] Yanbei Chen, Yonggin Xian, A Koepke, Ying Shan, and Zevnep Akata, Distilling audio-visual knowledge by compositional contrastive learning. In CVPR, 2021.

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015. [26] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In CVPR, 2019.

- [27] Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic knowledge transfer. In ECCV, 2018.
- [30] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015. [32] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In ICLR, 2019.