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In this document, we first provide an algorithmic overview in Section 1. We provide
ablation study of our model in Section 2. We give more quantitative and qualitative results
in Section 3 and Section 4 respectively. Finally, we give more implementation details in
Section 5.

1 Algorithmic Overview
As mentioned in the paper in Section 3.4, we adopt two different training strategies for opti-
mizing the teacher and the student networks: (1) mutual learning [10], which optimizes the
teacher with the target objective Lce and the student with the full objective simultaneously;
(2) sequential learning [3], which optimizes the teacher and student networks sequentially
by first training the teacher with the task objective Lce and then training the student with the
full objective. We present the algorithmic overviews for our Embedding Graph Alignment
(EGA) model using these two training strategies in Algorithm 1 and Algorithm 2 respec-
tively.

2 Ablation Study

Model ablation. We analyze the different loss terms in our EGA model. As Table 1 shows,
we evaluate our model in comparison to three baseline models: (1) baseline (which is the stu-
dent network trained without distillation); (2) EGA w/o Lnode, which removes the loss term
Lnode for aligning node matrix to an identity matrix; (3) EGA w/o Ledge, which removes
the loss term Ledge for aligning the edge matrices between the teacher graph and the student
graph. From Table 1, we have the following observations. First, our full model formulation
EGA performs much better than the other EGA variants with a single loss term, offering the
best accuracy of 76.65%, 84.15%, 60.61% on CIFAR100, STL-10 and TinyImageNet. Sec-
ond, “EGA w/o Lnode” and “EGA w/o Ledge” both outperform the baseline, which suggests
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Algorithm 1 Distilling self-supervised knowledge by Embedding Graph Alignment using a
simultaneous training strategy
Input: Training image data I with labels Y , Training iter-
ations τ; Self-supervised teacher networks Nt .
Output: Distilled student networks Ns.
Initialisation: Randomly initialise Ns, teacher’s new
added layers Mt , two optimizers.
for iteration t in [1 : τ] :

Feed a batch of B images {I1, I2, ..., IB} to Nt , Ns.
Get teacher feature embeddings Xt .
Get student feature embeddings Xs.
Derive teacher edge matrix Et = E(Xt ,Xt).
Derive student edge matrix Es = E(Xs,Xs).
Derive node matrix Nst = E(Xt ,Xs).

Compute edge matching loss Ledge = ∥Et −Es∥2.
Compute node matching loss Lnode = ∥Nst −I∥2.
Compute the EGA loss LEGA = Lnode +λLedge.
Compute teacher final loss Lt = Lcet .
Compute student final loss Ls = Lces +λEGALEGA.
Backpropagation on the teacher’s new layers Mt .
Backpropagation on the student network Ns.

end for
return Nt

that both loss terms are effective for distilling the knowledge from the teacher to the student
network. This ablation shows that our EGA works effectively for distilling self-supervised
knowledge to improve recognition.

Method CIFAR 100 STL-10 TinyImageNet
baseline 72.38 80.63 57.54
EGA w/o Lnode 75.18 83.78 59.52
EGA w/o Ledge 75.21 82.35 59.82
EGA 76.65 84.15 60.61

Table 1: Ablation study on different loss components. Teacher: self-supervised ViT-B/32 from [7].
Student: resnet8x4.

Hyperparameter analysis. We analyze the hyperparameters of the edge matching loss Ledge
and node matching loss Lnode in Table 2. We explore the effect of these two loss terms
by varying their weights λedge and λnode wrt to the supervised loss term (i.e. L = Lce +
λedgeLedge and L= Lce +λnodeLnode). We test this by setting the weight of one loss term to
be zero and changing the weight of another loss term (either λedge or λnode). In the first two
rows of Table 2, we can see that the model performance first increases and then decreases
when increasing λedge. In the last two rows of the table, We can also see that similar trends of
model performance as the left figure when increasing λnode. The best performing values for
λedge, λnode are 0.5, 1.5, which we use to trade off Lnode, Ledge and guide our hyperpameter
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Algorithm 2 Distilling self-supervised knowledge by Embedding Graph Alignment using a
sequential training strategy
Input: Training image data I with labels Y , Training iter-
ations τ; Self-supervised teacher networks Nt . Pre-trained
teacher’s new added layers Mt .
Output: Distilled student networks Ns.
Initialisation: Randomly initialise Ns, student optimizer.
for iteration t in [1 : τ] :

Feed a batch of B images {I1, I2, ..., IB} to Nt , Ns.
Get teacher feature embeddings Xt .
Get student feature embeddings Xs.
Derive teacher edge matrix Et = E(Xt ,Xt).
Derive student edge matrix Es = E(Xs,Xs).
Derive node matrix Nst = E(Xt ,Xs).

Compute edge matching loss Ledge = ∥Et −Es∥2.
Compute node matching loss Lnode = ∥Nst −I∥2.
Compute the EGA loss LEGA = Lnode +λLedge.
Compute student final loss Ls = Lces +λEGALEGA.
Backpropagation on the student network Ns.

end for
return Nt

setting λ =
λedge
λnode

≈ 0.3.

Node weight 1.2 1.4 1.5 1.6 1.8 2.0
Accuracy 75.11 75.56 75.85 75.17 75.51 74.91

Edge weight 0.2 0.4 0.5 0.6 0.8 1.0
Accuracy 74.47 75.32 75.56 74.99 74.72 74.27

Table 2: Effect of hyperparameters (node weight, edge weight) on CIFAR10.

3 More Quantitative Results

Analysis of the graph size. We analyze the different graph size of the EGA loss in Figure
1. As the graph size (i.e. the number of node) is equal to the batch size, we change the batch
size from 16, 32, 64, 128, 256 with a double increase to obtain different graph size. Figure
1 shows the trends of model performance as the graph size change. As can be seen, EGA
obtains the best model performance with a graph size of 64, and the worse performance with
a graph size of 256. When using a graph size of 16, 32, 64, and 128, the model performs
similarly well, which suggests that EGA could work robustly under various choices of batch
size.
Numerical results. Due to space limit, we show only the top performing methods in Table
2 and Table 5 in the paper. Here, we present the numerical results of all the comparative
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Fig. 1: Model performance (top 1 accuracy, %) under varying graph size (i.e. which is quantified by
the batch size).

Method
Same student different teacher Same teacher different student
ViT-B/32 ViT-B/16 RN101 Resnet8x4 ShuffleNetV1 VGG13

KD[3] 71.82 9.6 65.16 71.82 73.52 75.40
FitNet[8] 74.83 67.85 73.69 74.83 nan 76.28
PKT [6] 73.48 72.71 72.66 73.48 74.92 75.35
RKD[5] 73.36 72.43 73.92 73.36 72.62 73.26
NCE [1] 74.42 73.89 74.04 74.42 74.36 76.61
CRD[9] 75.51 73.38 74.85 75.51 74.87 77.41
CCL[1] 75.98 39.56 74.22 75.98 76.05 77.54

EGA 76.11 74.02 75.22 76.11 76.74 77.76
Table 3: Top 1 accuracy (%) of student networks on CIFAR100. In column 1-3, we use the same
student (resnet8x4) and vary the self-supervised teacher using ViT-B/32, ViT-B/16, RN101 from [7].
In column 4-6, we use the same teacher (ViT-B/32) and vary the student using resnet8x4, shuffleNetV1,
VGG13. The teacher and student are trained sequentially [10]. Best results are bold.

Method CIFAR 100 STL-10 TinyImageNet
KD [3] 71.82 82.51 53.88
FitNet 74.83 nan nan
PKT [6] 73.48 nan 59.72
RKD [5] 73.36 82.67 58.32
NCE [1] 74.42 80.07 60.00
CRD [9] 75.51 78.76 60.82
CCL[1] 75.98 80.41 61.24
EGA 76.11 83.01 61.85

Table 4: Top 1 accuracy (%) of student networks on CIFAR100, STL10, TinyImageNet. Teacher:
self-supervised ViT-32 [7]. Student: resnet8x4. The teacher and student are trained sequentially [3].
Best results are highlighted in bold.

methods using the same evaluation setup in Table 2 and Table 5, as detailed in Table 3
and Table 4 respectively. As can be seen, our model obtains the best overall performance
compared to the other compared methods. These evidences are consistent with our analysis
in the paper.

4 More Qualitative Results

Visualizing embeddings with t-SNE. In order to examine the distilled structural semantic
relationships learned from the teacher network by different loss terms, we visualize the fea-
ture embeddings of the EGA and RDK models from different classes. We compare RKD
and our EGA, as both of these models focus on distilling structural relationship information
from the teacher networks. Figure 2 and Figure 3 show the feature distributions from RKD
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and EGA models, which depicts the seven fine-grained classes from two hyperclasses – or-
chids, poppies, roses belong to the hyperclass flowers, while bed, chair, table, and wardrobe
belong to the hyperclass furniture. As can be seen in two figures, our model is capable of
capturing the inter-class and hyper-class structural relations much better than RKD. From
Figure 2, We can see that the cluster of bed is mixed with other clusters, especially the clus-
ter of table. While in Figure 3, the cluster of bed has higher compactness, and table has
clearer decision boundary wrt the clusters of other classes than RKD’s. Moreover, the hy-
perclasses furniture and flowers are more separated in our model EGA than RKD. Overall,
these visualizations suggest that the EGA model learns the structural semantics and captures
the instance-instance relations better than RKD.

orchids
poppies
roses
bed
chair
table
wardrobe

Fig. 2: t-SNE visualization [4] of the RKD feature embeddings from different classes on CIFAR100.

orchids
poppies
roses
bed
chair
table
wardrobe

Fig. 3: t-SNE visualization [4] of the EGA feature embeddings from different classes on CIFAR100.

5 Implementation Details

Data augmentation. Each input image is transformed into two ways for teacher and student
model. For student networks, The image augmentation pipeline consists of the following
transformations: random cropping, random horizontal flipping, and normalization. As for
teacher, the pipeline consists of random cropping, resizing to 224 × 224, random horizontal
flipping and normalization. If the teacher model is a self-supervised pre-trained model which
has its own preprocessing parameter, e.g. CLIP [7], both our teacher and our student will
follow the same CLIP image preprocessing normalization parameters. The normalization
parameters for evaluation is always consistent with training.
Training Details. The student networks are trained by the combination of a cross-entropy
classification objective and a knowledge distillation objective. For the weight balance factor
of these two loss terms, we directly use the optimal value from the original paper or adopted
from CRD [9]. For the simultaneous training mode, the teacher’s new added layers are
trained by SGD with an initial learning rate of 0.01. For student network, we follow the
setting from CRD [9]. That is, if the student is ShuffleNetV1, we use an initial learning rate
of 0.01, while 0.05 for other models.
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Supervised teacher vs self-supervised teacher networks. As mentioned in our paper, we
evaluate multiple self-supervised teacher networks including ViT-B/32, ViT-B/16, RN101
from CLIP [7], which are downloaded from the CLIP GitHub repository. We only fine-tune
the last two layers of the teacher networks on the target datasets. Thus, a self-supervised
teacher network would capture both self-supervised knowledge and supervised knowledge
from a target dataset. As for the supervised teacher networks, we use the pre-trained teacher
networks which are pre-trained on ImageNet [2] and fine-tuned on the CIFAR100. Hence, a
supervised teacher network would contain the supervised knowledge from the ImageNet and
CIFAR100, which requires more annotations efforts compared to a self-supervised teacher
network. For instance, in the paper, the self-supervised RN101 teacher network in Table
2 obtains an accuracy of 67.76% while the supervised RN101 teacher network in Table 3
obtains an accuracy of 73.58%. As for the downstream task on CIFAR100, the student with a
self-supervised RN101 teacher obtains an accuracy of 75.22% (in Table 2) while the student
with a supervised RN101 teacher obtains an accuracy of 75.77% (in Table 3). Overall,
these results suggest that a self-supervised teacher network may not start with a better model
initialization compared to a supervised teacher; however, with our model formulation, the
self-supervised knowledge can be well distilled to improve the generalization of a student
network on the downstream tasks.
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