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Abstract

A lot of progress has been made since the first neural network models were trained
for specific image restoration tasks, such as super-resolution and denoising. Recently
multi-degradation models have been proposed, allowing for user control of the restora-
tion process needed for real-world applications. However, this aspect is most powerful if
the initial restoration can be done as best as possible in a blind setting. In parallel to this
line of work, other methods can target the blind setting where, for example, in the case of
super-resolution, the blur kernel is estimated for conditioning the restoration part. In par-
ticular, discriminative learning has played a key role in pushing the state of the art. Still,
the learned representation cannot be interpreted or manipulated and remains a black box
that doesn’t offer any possibility for user-guided correction. This work addresses those
issues through a representation learning pipeline that helps separate content from degra-
dation by reasoning on pairs of degraded patches. The degradation representation is used
as conditioning for a video restoration model that can denoise and upscale to arbitrary
resolutions and remove film scratches. Finally, the learned representation can be mutated
to fine-tune the restoration results. We demonstrate state-of-the-art results compared to
the most recent video super-resolution and denoising methods.

1 Introduction
With the development of video streaming services and the increased competition between
the different providers in terms of catalog size, there is a regain of interest for the studios
to remaster old shows and productions to make them available on their streaming platform.
Our work addresses the problem of video restoration in the context of remastering legacy
video content. This content is often available in noisy, blurry, and low-resolution format
and may contain scratches. Therefore, the remastering process has to address a combina-
tion of degradations and, importantly, allow for user control to have a fine-level control on
the output quality. Recent developments in deep learning have pushed the state-of-the-art
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Figure 1: Controllable Blind Video Restoration. Given a low-resolution and degraded
input video, our model can be used to denoise and/or upscale. We automatically estimate the
degradation present in the image (column Ed). It is possible to manipulate the degradation
representation to control the restoration result and for example increase/reduce sharpness.

in the sub-problems independently by exploring different architectures or training settings
in super-resolution [6, 28, 29, 50, 52, 65] and video denoising [45, 59]. However, chaining
these specialized models is sub-optimal and multi-degradation models have been success-
fully proposed [17]. One essential requirement for adopting a restoration model by the in-
dustry is user control of the restoration process. This appears more clearly in recent works
such as [11], where image sharpness can be fine-tuned locally. More recently, Kim et al [25]
further reduce the complexity of multi-degradation models through architecture search, with
the objective of interactive control of the restoration results. This requirement for user con-
trol is most powerful if the initial restoration can be done as best as possible in a blind
setting, limiting user efforts to minimal fine-tuning. Blind restoration is not possible with
these existing models [17, 25] which require providing the degradation parameters. In par-
allel, most recent blind restoration methods [49] achieve good results. However, the learned
representation cannot be interpreted or manipulated.

Here we propose a multi-degradation restoration model that can address jointly denois-
ing, super-resolution and scratch-removal. The restoration can operate in blind settings while
still allowing for manipulating the result: The input video can be in low-resolution and may
contain scratches. The model automatically estimates the degradation and produces restored
frames both in low-resolution and high-resolution. Additionally, the output can be further
manipulated to increase sharpness (see Fig. 1). A brief overview of our method during infer-
ence is presented in Figure 2. It consists of three main steps: (i) extracting an interpretable
and controllable representation of different degradations; (ii) manipulating the degradations
if necessary; (iii) finally conditioning the restoration backbone with estimated/manipulated
degradation embedding. To the best of our knowledge, no solution considers the complete
problem of video restoration that takes into account: Scratch removal, denoising, and up-
scaling while offering flexibility in manually fine-tuning the restoration of the signal.

Our training strategy leverages contrastive learning to learn an abstract representation
that distinguishes various degradations in the representation space rather than explicit es-
timation in the pixel space. A key difference from Wang et al. [49] is the possibility of
controlling the restoration process via manipulating the degradation features. This requires
better estimates for the degradation parameters, which is possible thanks to our training
strategy using pairs of degraded training samples and hard negative samples. Finally, we
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Figure 2: Overview of our controllable restoration pipeline. We first estimate the degra-
dation feature by feeding the corrupted video to the encoder Ed . The degradation feature
is used as conditioning for the restoration backbone RB. It is possible to adjust both the
denoising strength and blur kernel: This mutated version of the embedding (in orange) can
similarly be used as conditioning for the restoration. It corresponds to the alternative outputs
indicated by the dotted arrows (see text for details).

consider a wider range of degradations and address video restoration in a general setting
where super-resolution is not limited to a discrete set of scaling factors is necessary when
processing video formats like NTSC. Our contributions can be summarized as follows: (i)
A video restoration model that can jointly address multiple types of degradations. (ii) A
new contrastive training strategy to learn an interpretable and controllable representation of
different degradations. (iii) State-of-the-art results in blind video restoration.

2 Related Work
Super-Resolution. This research area is active and has primarily benefited from the latest
advances in deep learning (see, e.g., [13, 26, 28, 52]). An important part of super-resolution
research works has focused on improving task-specific CNN architectures and components
(see e.g., [1, 12, 27, 29, 30, 33, 38, 43, 50, 55, 57, 60, 64, 65, 66]). Many other aspects have
been considered, ranging from using adversarial training for realistic detail hallucination [4,
28, 37, 62]), to improve the realism of the training set through accurate modeling [7, 54] or
through using real zoomed-in images [9, 63]. Temporal information can also be used in the
context of video super-resolution [6, 16, 22, 24, 31, 44, 47, 51, 56].

However, in this work, we focus more on methods addressing blind super-resolution [2,
11, 15, 34, 40]. These rely on some form of test-time optimization to estimate the blur
kernel and predict the corresponding high-resolution output. These two steps can be done
separately [34], jointly [11, 15] or require a fine-tuning of the super-resolution model [2, 40].
In the case of blind video super-resolution, Pan et al. [36] estimate a blur kernel used in an
image deconvolution step. The resulting image is then restored using a neural network and
aligned adjacent frames. We can note that this strategy may not be optimal as the restoration
neural network cannot directly leverage the blur kernel information.
Denoising. Similarly to super-resolution, a lot of progress has been made since early works
based on neural networks [5, 21, 53]. We focus here on recent video denoising methods:
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Yue et al. [59] proposed a raw video denoising network (RViDeNet) by exploring the tem-
poral, spatial, and channel correlations of video frames. Tassano et al. [46] proposed a video
denoising algorithm based on a convolutional neural network model conditioned on the noise
level. Maggioni et al. [32] introduced an a multi-stage algorithm to reduce the complexity
while maintaining denoising performance. These methods strongly rely on providing noise
level as input. Closer to our blind setting, Claus et al. [10] use a multi-frame neural network
architecture to denoise videos and considered varied noise models during training. Although
more robust than specialized denoisers, results are not competitive with more recent methods
leveraging noise parameters at test time.
Scratch Removal. Scratch removal is a classical mixed degradation problem when work-
ing with old photo/video data, and most existing methods consider it an image inpainting
problem [3, 8, 14, 41]. Some works consider joint restoration of images corrupted by a com-
bination of different distortions [42, 58]. Wan et al. [48] proposed a triplet domain translation
network by leveraging real photos and synthetic image pairs and trained two variational au-
toencoders (VAEs) to transform old photos and clean photos into two latent spaces. And the
translation between these two latent spaces is learned with synthetic paired data.
Multi-degradation models. Combining multiple specialized models to restore images
is not optimal and efficient conditioning for a multi-degradation model was proposed by
Heet. al [17]. This model was recently used by Wang et. al [49] in the blind restoration set-
ting, leveraging contrastive learning to avoid test-time optimization while still conditioning
the restoration model on the estimated degradation. However, the proposed model is limited
to images, fixed scaling factors and the learned representation cannot be interpreted or ma-
nipulated. Finally, Kim et al [25] further reduce the complexity of multi-degradation models
through architecture search, with the objective of interactive control of the restoration results.
They still require providing the degradation parameters.

3 Method
We aim to build a model that can restore videos corrupted by the most common set of degra-
dation present in legacy film content, namely: scratches, noise, and the implicit blur in the
low-resolution input. We can briefly formulate the degradation model of a set of consecutive
low-resolution (LR) frames y as follows:

y = S◦
(
(x∗ k) ↓s +n

)
(1)

where x is the corresponding unknown set of consecutive high-resolution (HR) frames, ∗ is
convolution operation, k is a blur kernel, ↓s denotes downsampling operation by factor s, n
stands for noise, and S represents a film scratch as a mask that sets pixel color values to 1.

As illustrated in Figure 2, we train an encoder Ed capable of extracting a latent repre-
sentation for the degradation present in the input set of frames. For this, we leverage recent
advances in contrastive learning [18, 49]. This latent representation is then used as condition-
ing for the feature restoration backbone RB, which is used both for low-resolution denoising,
with RDN , and the super-resolution path RSR. We leverage information from multiple frames
in our model without using explicit motion estimation - a strategy already successfully used
in frame interpolation [23]. We use a set of 5 input frames for each output frame: the current
frame and 2 temporally adjacent frames from the past and future. Our model also learns to
decode the degradation representation into blur kernel and noise levels. Furthermore, it is
possible to modify these parameters and adjust the latent representation accordingly, thanks
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Figure 3: Overview of our degradation learning pipeline. We first degrade two high-
resolution input images with a pair of degradations d1, d2. We encode low-resolution de-
graded image pairs using encoder Ed . Later, features of the first and second rows are con-
catenated and passed to a two-layer MLP network. Final outputs connected with a green
arrow form a positive pair for contrastive learning. A red feature from the third row creates
a hard negative example for the feature from the first row since its obtained via encoding the
same image corrupted with degradations d3 and d4. We additionally regress the blur kernel
k1 and noise level σ1 via encoders Ek and Es, respectively. We also learn to manipulate
features using encoder M by supplying it with adjusted degradation parameters k5,σ5 and
obtain z5

p = M(z6
p,k5,σ5).

to the mutator model M. This flexibility is needed in real-world applications where artists
may want to control sharpness levels and denoising strength.

In the following, we first learn video degradation representation, then our proposal to
allow the manipulation of the learned latent representation and finally, we take advantage of
the learned representation to condition the restoration task.
Video Degradation Representation The objective is to learn to extract from the input
frames a latent representation that should be discriminative towards different degradations in
the input. More precisely, two different, similarly degraded videos should lead to two em-
beddings close to each other. In contrast, the two differently degraded versions of the same
video should result in latent representations further apart. This is a more challenging objec-
tive than the one considered by Wang et al. [49], which is a more straightforward application
of the Moco [18] representation learning framework: the loss was designed such as to push
further away the embedding of patches from different images while bringing closer patches
from the same image. Such an objective doesn’t encourage a clear disentanglement between
the content and the degradation.

We are interested in disentangling the degradation from the content, but different samples
from the training set are captured with sensors of varying resolutions, exposures, and noise
levels. Any high-resolution image already contains a certain amount of degradation, and the
application of the degradation model from Equation 1 will result in a mixture of two degra-
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dations: inherent from a high-resolution image and one from equation 1. Separating these
two degradations is an ill-posed problem. Therefore, directly training the encoder Ed with a
Multilayer Perceptron (MLP) that tries to optimize our contrastive learning objective is not
optimal. To address this issue, we propose to train the encoder Ed using pairs of degraded
patches obtained from sampling a random high-resolution image and degrading it with two
different degradations. Consequently, the MLP should focus on differences between degra-
dations introduced during training rather than the ones present in the original high-resolution
video.

An overview of the training procedure is presented in Figure 3. Let us denote a specific
set of different degradations from equation 1 as di ∼ D parameterized by blur kernel ki and
noise level σi, yi

p = di(xp) as video xp degraded with degradation di, and zi
p = Ed(yi

p) as
latent vector obtained by encoding yi

p using encoder Ed . We sample pairs of degradations
(di,d j), (dk,dl), and videos xp,xq. We apply pairs of sampled degradations to the videos and

encode them using encoder Ed : xp→
(

di(xp),d j(xp)
)
→ (yi

p,y
j
p)→ (zi

p,z
j
p)

xq→
(

di(xq),d j(xq)
)
→ (yi

q,y
j
q)→ (zi

q,z
j
q) xp→

(
dk(xp),dl(xp)

)
→ (yk

p,y
l
p)→ (zk

p,z
l
p)

where superscripts and subscripts denote degradations and input videos, respectively. Note
that embedding pairs (zi

p,z
j
p) and (zi

q,z
j
q) are obtained by degrading two different videos xp

and xq, with the same pair of degradations (di,d j). Therefore, they form a positive pair. Hard
negative pairs (zi

p,z
j
p) and (zk

p,z
l
p) are obtained by degrading the same video xp with different

pairs of degradations: (di,d j) and (dk,dl). We provide these difficult negative examples
during training to force the neural representation to focus on the degradation rather than the
content. Next, we define the relative degradations via concatenating the resulting embedding
pairs and following the Moco framework feed them to a two-layer MLP projection head F :
ψ

i j
p =F

(
[zi

p,z
j
p]
)

, ψ
i j
q =F

(
[zi

q,z
j
q]
)

, and ψkl
p =F

(
[zk

p,z
l
p]
)

. We want ψ
i j
p to be similar to ψ

i j
q

since they share the same relative degradations and are dissimilar to ψkl
p since degradations

are different. Therefore, an InfoNCE loss is used to measure the similarity:

Lc =
V

∑
p,q

D

∑
i, j
− log

e
(

ψ
i j
p ·ψ i j

q /τ

)

∑
NQ
t=1 e

(
ψ

i j
p ·ψt/τ

)
+ e

(
ψ

i j
p ·ψkl

p /τ

) (2)

where a different degradation pair kl is randomly sampled for each degradation pair i j. NQ is
the number of samples in the MoCo queue, V is a set of training videos, D is a set of degra-
dations, τ is a temperature parameter, and · denotes the dot product between two vectors.

To allow the modification of the results and fine-tuning of the outputs in addition to
optimizing for Lc we also estimate the parameters ki and σi of applied degradation di. We
train a small degradation regressor MLPs: Ek and Es that regress the parameters ki and σi, in
a standardized format by optimizing:

Lk =
V

∑
p

D

∑
i

∣∣∣∣∣Ek

(
Ed

(
di(xp)

))
− ki

∣∣∣∣∣ Ls =
V

∑
p

D

∑
i

∣∣∣∣∣Es

(
Ed

(
di(xp)

))
−σi

∣∣∣∣∣ (3)

where subscripts k and σ identify the specific output of the model E.
Overall training objective can be summarized as follows:

L= λcLc +λkLk +λsLs (4)
Learning to Manipulate Degradations. Our goal is to restore the distorted videos. How-
ever, we also want to have fine-grained control over this process. For example, one might
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need to correct the blur kernel, adjust the noise level and obtain the alternatively restored
video. Therefore, we freeze the pre-trained encoder Ed and train the model M to perform
manipulations in the latent space of degradations. Given the embedding zi

p = Ed

(
di(xp)

)
and some new adjusted parameters k j,σ j, the model M enables the manipulations in the la-
tent space and regresses the feature z j

p = M(zi
p,k j,σ j). During training we sample video xp,

and a pair of degradations: di,d j. Next, we degrade xp obtaining yi
p = di(xp) and y j

p = d j(xp).
We compute encodings zi

p = Ed(yi
p),z

j
p = Ed(y

j
p) using frozen encoder Ed . Finally, we train

model M by minimizing the following objective:

Lm =
V

∑
p

D

∑
i, j

∣∣∣∣∣M(zi
p,k j,σ j)− z j

p

∣∣∣∣∣ (5)

Learning Conditional Restoration. As illustrated in Figure 2, the proposed model extracts
from consecutive frames an encoding of the degradation present in the video. This degrada-
tion, expressed as a latent vector, is then used as conditioning for the restoration. Formally
our model consists of restoration backbone RB and two task-specific branches: RSR and RDN
for super-resolution and denoising, respectively. The motivation for having a shared back-
bone RB is to simultaneously learn features beneficial for different restoration tasks. While
the networks RSR and RDN should learn features tailored for super-resolution, denoising, and
scratch removal, respectively.

Given a corrupted input yi
p we first obtain the corresponding degradation embedding

Ed(yi
p). We pass both yi

p and Ed(yi
p) to the restoration backbone RB. Consequently, the re-

sulting final feature map from RB is fed to RSR and RDN subnetworks, respectively. Therefore,
we produce two outputs in this model. The first is the low-resolution denoised image and,
consequently, the original low-resolution noise. The second is the denoised high-resolution
image. Rather than outputting a fixed 4× super-resolved frame, we employ Meta Upscale
module [19] at the end of our RSR model to enable non-integer upsampling factors and ad-
dress more general scenarios. Additionally, our model must remove the possible scratches
presented in the video for both super-resolution and denoising branches. Hence in addition
to the losses mentioned in the equation 4, during training models RSR and RDN are trained to
minimize objectives LSR and LDN respectively.

LSR =
V

∑
p

D

∑
i

∣∣∣∣∣RSR

(
Ed(yi

p),y
i
p

)
− x̂p

∣∣∣∣∣ LDN =
V

∑
p

D

∑
i

∣∣∣∣∣RDN

(
Ed(yi

p),y
i
p

)
− (x̂p ∗ ki) ↓s

∣∣∣∣∣ (6)

where x̂p corresponds to the middle high-resolution ground-truth frame of the set of frames
xp. In addition to the content losses mentioned in equations 6, we also keep fine-tuning the
degradation encoder and manipulation models. Therefore, our final objective becomes:

L= λSRLSR +λDNLDN +λcLc +λkLk +λsLs (7)

4 Experiments
We incorporated the Vid4 and Set8 datasets for comparison and ablation purposes. We gen-
erated multiple degraded versions of the original datasets to demonstrate the capabilities of
our pipeline in different settings. First, we created multiple blurry versions of each dataset
using nine blur kernels presented in Table 2. Afterward, we downsampled and corrupted
each blurry dataset using AWGN of different magnitudes. And finally, we followed the Wan
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Feature Contrasting MAE↓ Kernel Similarity↑

Single 0.0008 0.9438
KernelGAN[2] 0.0006 0.9446

Pairwise 0.0005 0.9821

Table 1: Kernel estimation accuracy for single and pairwise feature contrasting strategies.
The first and second rows correspond to single and pairwise feature contrasting strategies,
respectively. Results obtained using the KernelGAN[2] are reported in the second row. We
report Mean Absolute Error, and Kernel Similarity [20].

et al. [48] method to generate scratched versions of the datasets. For quantitative compari-
son, we used PSNR and SSIM. Additional training and implementation details can be found
in the supplementary material.
Single vs Pairwise Contrasting Ablation. An essential pipeline component is the encoder
Ed that learns to map the degraded videos to the latent space. As we mentioned previously,
features from the latent space should reflect as much information as possible about the degra-
dation in the input video. Therefore, we evaluate the latent space via the quality of the blur
kernels that the encoder Ek produces given a feature from Ed as input. We use Kernel Simi-
larity [20] and Mean Absolute Error (MAE) as evaluation metrics between ground truth and
estimated kernels. We thus perform ablation experiments for different ways to train the en-
coder Ed and justify the choice of the pairwise training strategy. We consider two possible
design choices: (i) training Ed by contrasting single video embeddings, and (ii) training Ed
by contrasting pairs of video embeddings. MAE’s and Kernel Similarities are reported in Ta-
ble 1. One can observe that the Pairwise feature contrasting strategy leads to a better quality
of the estimated kernels.
Initial vs Mutated Kernels Ablation. We also evaluated how well mutator M manipulates
the latent input features. Specifically, we are interested in consistency between the input
kernel to the model M and kernel-related information contained in the output manipulated
latent code. Towards this goal, we first feed model M with a latent code, noise level, and
adjusted blur kernel; and obtain the adjusted code. After, we provide the modified latent
code to the Kernel estimator Ek and estimate the adjusted kernel. Finally, we measure the
MAE and Kernel Similarity between the initial adjusted blur kernel and the estimated blur
kernel after manipulation. We performed the mentioned procedure on degraded videos from
Set8 and obtained MAE = 0.0004 and KS = 0.9837 (Kernel Similarity).
Video Super-Resolution Comparisons. We performed a quantitative comparison with the
non-blind video super-resolution approach of Tian et al. [47], and with the blind methods
of Pan et al. [35], and Zhang et al. [61]. We report results for different blur kernels and
noise levels in Table 2. It provides mean PSNR/SSIM per kernel and per-noise level for
different methods. This allows analyzing all cases and observing how different methods
perform on isotropic/anisotropic gaussian blur kernels and noise levels of different magni-
tudes. Our method achieves the best performance in all settings except for the one closest
to the bicubic kernel, which is the one where naturally a specialized model [47] performs
best. To understand the benefits of our multi-frame and pairwise training, we retrained the
model of Wang et al. [49] on the Vimeo90K[56] and evaluated it on the Vid4 and Set8 test
sets. Retrained model achieves 22.47 / 0.63 and, 26.80 / 0.74 for Vid4 and Set8, respec-
tively. In contrast, our model achieves 22.73 / 0.66 on Vid4 and 27.07 / 0.76 on Set8 while
simultaneously addressing multiple restoration tasks, handling non-integer scaling factors,
and manipulating results.
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σ Method Blur Kernels
All

SE
T

8

0

Ours 27.51 / 0.82 27.17 / 0.79 24.25 / 0.67 27.76 / 0.81 26.40 / 0.77 25.52 / 0.73 27.74 / 0.81 26.44 / 0.77 25.38 / 0.72 26.46 / 0.77
Tian et al. [47] 29.22 / 0.84 26.20 / 0.75 24.20 / 0.67 27.38 / 0.79 25.66 / 0.74 24.94 / 0.70 27.49 / 0.80 25.80 / 0.74 25.02 / 0.70 26.21 / 0.75
Pan et al. [35] 26.89 / 0.79 25.76 / 0.73 23.99 / 0.66 25.82 / 0.74 24.74 / 0.70 24.66 / 0.69 26.52 / 0.77 25.02 / 0.71 24.72 / 0.69 25.35 / 0.72
Zhang et al. [61] 25.80 / 0.72 24.95 / 0.70 23.95 / 0.65 25.17 / 0.71 24.09 / 0.66 24.12 / 0.66 25.38 / 0.71 24.32 / 0.67 24.22 / 0.66 24.67 / 0.68

5

Ours 27.94 / 0.82 27.74 / 0.79 24.74 / 0.68 28.22 / 0.81 26.81 / 0.76 26.06 / 0.73 28.10 / 0.81 26.82 / 0.77 26.10 / 0.73 26.95 / 0.77
Tian et al. [47] 29.44 / 0.83 26.51 / 0.74 24.42 / 0.66 27.71 / 0.78 25.89 / 0.73 25.18 / 0.69 27.82 / 0.79 26.06 / 0.73 25.28 / 0.69 26.48 / 0.74
Pan et al. [35] 27.18 / 0.78 26.07 / 0.73 24.22 / 0.65 26.11 / 0.74 24.97 / 0.70 24.90 / 0.68 26.85 / 0.76 25.28 / 0.71 24.98 / 0.69 25.62 / 0.72
Zhang et al. [61] 26.16 / 0.72 25.27 / 0.69 24.21 / 0.65 25.49 / 0.71 24.35 / 0.66 24.40 / 0.66 25.73 / 0.71 24.64 / 0.66 24.52 / 0.66 24.97 / 0.68

10

Ours 28.51 / 0.81 28.14 / 0.78 25.26 / 0.68 28.58 / 0.80 27.13 / 0.75 26.53 / 0.73 28.52 / 0.80 27.35 / 0.76 26.72 / 0.73 27.42 / 0.76
Tian et al. [47] 29.01 / 0.79 26.68 / 0.71 24.61 / 0.63 27.74 / 0.75 26.03 / 0.69 25.36 / 0.66 27.80 / 0.75 26.17 / 0.70 25.47 / 0.66 26.54 / 0.70
Pan et al. [35] 27.32 / 0.77 26.35 / 0.71 24.45 / 0.64 26.35 / 0.73 25.21 / 0.68 25.14 / 0.67 27.06 / 0.75 25.53 / 0.70 25.23 / 0.67 25.85 / 0.70
Zhang et al. [61] 26.51 / 0.72 25.61 / 0.68 24.35 / 0.63 25.86 / 0.70 24.72 / 0.65 24.69 / 0.65 26.07 / 0.70 24.99 / 0.66 24.81 / 0.65 25.29 / 0.67

15

Ours 28.54 / 0.81 28.26 / 0.77 25.55 / 0.68 28.61 / 0.79 27.35 / 0.75 26.78 / 0.72 28.60 / 0.79 27.48 / 0.75 26.92 / 0.72 27.57 / 0.75
Tian et al. [47] 28.17 / 0.75 26.49 / 0.67 24.58 / 0.59 27.31 / 0.70 25.87 / 0.65 25.30 / 0.62 27.35 / 0.71 25.99 / 0.66 25.40 / 0.62 26.27 / 0.66
Pan et al. [35] 27.15 / 0.75 26.35 / 0.69 24.51 / 0.61 26.33 / 0.71 25.27 / 0.67 25.20 / 0.64 26.98 / 0.73 25.58 / 0.68 25.29 / 0.64 25.85 / 0.68
Zhang et al. [61] 26.62 / 0.71 25.77 / 0.67 24.44 / 0.62 26.05 / 0.69 24.98 / 0.65 24.88 / 0.64 26.22 / 0.69 25.20 / 0.65 25.00 / 0.64 25.46 / 0.66

25

Ours 27.44 / 0.79 27.52 / 0.75 25.51 / 0.67 27.63 / 0.77 26.82 / 0.73 26.48 / 0.71 27.65 / 0.78 26.88 / 0.74 26.55 / 0.71 26.94 / 0.74
Tian et al. [47] 25.89 / 0.65 25.16 / 0.57 23.86 / 0.50 25.58 / 0.61 24.72 / 0.56 24.39 / 0.53 25.61 / 0.61 24.80 / 0.56 24.44 / 0.53 24.94 / 0.57
Pan et al. [35] 25.97 / 0.70 25.44 / 0.61 24.05 / 0.54 25.52 / 0.66 24.74 / 0.62 24.61 / 0.57 25.92 / 0.66 25.00 / 0.63 24.66 / 0.57 25.10 / 0.61
Zhang et al. [61] 25.96 / 0.70 25.41 / 0.65 24.30 / 0.60 25.63 / 0.67 24.85 / 0.64 24.73 / 0.62 25.72 / 0.68 24.97 / 0.64 24.79 / 0.62 25.15 / 0.65

All

Ours 27.99 / 0.81 27.77 / 0.78 25.06 / 0.68 28.16 / 0.80 26.90 / 0.75 26.27 / 0.72 28.12 / 0.80 26.99 / 0.76 26.33 / 0.72 27.07 / 0.76
Tian et al. [47] 28.35 / 0.77 26.21 / 0.69 24.33 / 0.61 27.14 / 0.73 25.63 / 0.67 25.03 / 0.64 27.21 / 0.73 25.76 / 0.68 25.12 / 0.64 26.09 / 0.68
Pan et al. [35] 26.90 / 0.76 25.99 / 0.69 24.24 / 0.62 26.03 / 0.72 24.99 / 0.67 24.90 / 0.65 26.67 / 0.73 25.28 / 0.69 24.98 / 0.65 25.55 / 0.68
Zhang et al. [61] 26.21 / 0.71 25.40 / 0.68 24.25 / 0.63 25.64 / 0.70 24.60 / 0.65 24.56 / 0.65 25.82 / 0.70 24.82 / 0.66 24.67 / 0.65 25.11 / 0.67

V
ID

4

0

Ours 22.84 / 0.73 23.49 / 0.71 21.11 / 0.53 23.41 / 0.73 22.60 / 0.68 22.44 / 0.64 23.53 / 0.73 22.63 / 0.66 21.99 / 0.61 22.67 / 0.67
Tian et al. [47] 24.62 / 0.77 22.17 / 0.62 20.79 / 0.51 23.17 / 0.69 21.86 / 0.61 21.32 / 0.55 23.09 / 0.68 21.82 / 0.60 21.32 / 0.55 22.24 / 0.62
Pan et al. [35] 22.82 / 0.69 21.88 / 0.59 20.66 / 0.50 21.97 / 0.62 21.11 / 0.56 21.12 / 0.54 22.37 / 0.64 21.27 / 0.57 21.12 / 0.53 21.60 / 0.58
Zhang et al. [61] 22.24 / 0.62 21.65 / 0.59 20.82 / 0.53 21.80 / 0.61 20.91 / 0.56 20.96 / 0.55 21.85 / 0.60 20.97 / 0.55 21.07 / 0.55 21.36 / 0.57

5

Ours 23.03 / 0.74 23.59 / 0.71 21.47 / 0.55 23.60 / 0.73 22.76 / 0.67 22.55 / 0.64 23.54 / 0.73 22.65 / 0.66 22.47 / 0.63 22.85 / 0.67
Tian et al. [47] 24.52 / 0.76 22.22 / 0.61 20.84 / 0.50 23.21 / 0.68 21.88 / 0.60 21.35 / 0.54 23.12 / 0.67 21.84 / 0.59 21.36 / 0.54 22.26 / 0.61
Pan et al. [35] 22.81 / 0.69 21.94 / 0.59 20.71 / 0.49 22.03 / 0.62 21.15 / 0.56 21.16 / 0.53 22.40 / 0.64 21.31 / 0.56 21.18 / 0.53 21.63 / 0.58
Zhang et al. [61] 22.29 / 0.63 21.76 / 0.59 20.96 / 0.52 21.90 / 0.61 20.99 / 0.56 21.07 / 0.55 21.91 / 0.60 21.03 / 0.55 21.16 / 0.55 21.45 / 0.57

10

Ours 23.52 / 0.74 23.51 / 0.69 21.68 / 0.56 23.67 / 0.72 22.71 / 0.66 22.59 / 0.63 23.64 / 0.72 22.84 / 0.66 22.62 / 0.63 22.98 / 0.67
Tian et al. [47] 24.15 / 0.72 22.21 / 0.58 20.85 / 0.47 23.09 / 0.65 21.82 / 0.57 21.39 / 0.52 22.96 / 0.64 21.82 / 0.56 21.36 / 0.51 22.18 / 0.58
Pan et al. [35] 22.69 / 0.67 21.95 / 0.57 20.75 / 0.48 22.01 / 0.61 21.16 / 0.55 21.22 / 0.52 22.32 / 0.62 21.34 / 0.55 21.20 / 0.52 21.63 / 0.57
Zhang et al. [61] 22.24 / 0.62 21.75 / 0.58 20.85 / 0.51 21.91 / 0.60 21.04 / 0.55 21.13 / 0.54 21.87 / 0.59 21.10 / 0.54 21.14 / 0.53 21.45 / 0.56

15

Ours 23.36 / 0.74 23.31 / 0.68 21.69 / 0.55 23.48 / 0.72 22.73 / 0.65 22.49 / 0.62 23.56 / 0.71 22.77 / 0.65 22.49 / 0.61 22.88 / 0.66
Tian et al. [47] 23.62 / 0.68 22.02 / 0.54 20.76 / 0.44 22.79 / 0.61 21.73 / 0.54 21.25 / 0.49 22.74 / 0.60 21.65 / 0.53 21.24 / 0.48 21.98 / 0.55
Pan et al. [35] 22.51 / 0.66 21.86 / 0.55 20.72 / 0.46 21.90 / 0.60 21.18 / 0.53 21.15 / 0.50 22.26 / 0.60 21.29 / 0.54 21.15 / 0.50 21.56 / 0.55
Zhang et al. [61] 22.11 / 0.61 21.62 / 0.56 20.73 / 0.49 21.82 / 0.59 21.09 / 0.54 21.04 / 0.52 21.84 / 0.58 21.07 / 0.53 21.04 / 0.52 21.37 / 0.55

25

Ours 22.61 / 0.72 22.70 / 0.66 21.39 / 0.54 22.73 / 0.70 22.22 / 0.64 22.09 / 0.60 22.77 / 0.69 22.17 / 0.63 22.00 / 0.59 22.30 / 0.64
Tian et al. [47] 22.33 / 0.60 21.38 / 0.47 20.35 / 0.38 21.85 / 0.54 21.09 / 0.47 20.81 / 0.42 21.78 / 0.53 21.03 / 0.46 20.73 / 0.42 21.26 / 0.48
Pan et al. [35] 21.85 / 0.61 21.41 / 0.50 20.43 / 0.41 21.40 / 0.55 20.83 / 0.50 20.86 / 0.45 21.63 / 0.55 20.94 / 0.50 20.79 / 0.44 21.13 / 0.50
Zhang et al. [61] 21.54 / 0.59 21.18 / 0.54 20.40 / 0.48 21.32 / 0.57 20.78 / 0.53 20.75 / 0.51 21.26 / 0.56 20.71 / 0.52 20.66 / 0.50 20.96 / 0.53

All

Ours 23.07 / 0.73 23.32 / 0.69 21.47 / 0.55 23.38 / 0.72 22.60 / 0.66 22.43 / 0.63 23.41 / 0.72 22.61 / 0.65 22.31 / 0.61 22.73 / 0.66
Tian et al. [47] 23.85 / 0.71 22.00 / 0.56 20.72 / 0.46 22.82 / 0.63 21.68 / 0.56 21.22 / 0.50 22.74 / 0.62 21.63 / 0.55 21.20 / 0.50 21.98 / 0.57
Pan et al. [35] 22.54 / 0.66 21.81 / 0.56 20.65 / 0.47 21.86 / 0.60 21.09 / 0.54 21.10 / 0.51 22.20 / 0.61 21.23 / 0.54 21.09 / 0.50 21.51 / 0.56
Zhang et al. [61] 22.08 / 0.61 21.59 / 0.57 20.75 / 0.51 21.75 / 0.60 20.96 / 0.55 20.99 / 0.53 21.75 / 0.59 20.98 / 0.54 21.01 / 0.53 21.32 / 0.56

Table 2: Quantitative comparison to other video super-resolution methods at 4x scaling fac-
tor. We report PSNR/SSIM values of our and competitor methods on the Set8 and Vid4
datasets. Different rows and columns correspond to different AWGN levels and blur kernels.

Dataset Dataset Dataset
σ Method VID4 SET8 σ Method VID4 SET8 σ Method VID4 SET8

5

Ours 40.85 / 0.99 40.22 / 0.99

10

Ours 35.46 / 0.99 35.09 / 0.99

All

Ours 34.09 / 0.99 33.65 / 0.98
UDVD [39] 36.66 / 0.98 38.11 / 0.97 UDVD [39] 33.41 / 0.97 33.96 / 0.95 UDVD [39] 32.52 / 0.97 32.71 / 0.95
DVDnet [45] 37.92 / 0.99 39.30 / 0.99 DVDnet [45] 34.27 / 0.98 34.02 / 0.96 DVDnet [45] 33.07 / 0.97 32.7 / 0.95
FastDVDnet [46] 40.68 / 0.99 39.80 / 0.99 FastDVDnet [46] 34.83 / 0.99 34.52 / 0.99 FastDVDnet [46] 33.57 / 0.99 33.14 / 0.99

15

Ours 32.30 / 0.99 31.78 / 0.98

25

Ours 27.76 / 0.99 27.50 / 0.97
UDVD [39] 31.52 / 0.96 31.27 / 0.94 UDVD [39] 28.48 / 0.95 27.48 / 0.93
DVDnet [45] 31.94 / 0.97 30.81 / 0.94 DVDnet [45] 28.15 / 0.94 26.67 / 0.89
FastDVDnet [46] 31.64 / 0.99 31.24 / 0.99 FastDVDnet [46] 27.11 / 0.99 26.98 / 0.99

Table 3: Quantitative comparison to the non-blind video denoising methods. We report
PSNR/SSIM values on VID4 and Set8 datasets.

Dataset
Method VID4 SET8

Ours 36.09 / 0.99 31.93 / 0.98
Wan et al. [48] 24.54 / 0.83 26.98 / 0.86

Table 4: Quantitative comparison to the scratch removal method of Wan et al. [48].

Video Denoising Comparisons. We performed a quantitative comparison with the video
denoising methods of Tassano et al. [45, 46], and Sheth et al. [39]. We report results for
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10 CONTRASTIVE LEARNING FOR CONTROLLABLE BLIND VIDEO RESTORATION:

different noise levels in Table 3. Our blind method achieves competitive performance and
slightly outperforms the model of [46] , which has access to the noise level as input.

LR Middle Frame Tian et al. [47] Pan et al. [35] Ours Ground-Truth

Figure 4: Qualitative Comparison Super-Resolution. We performed a qualitative com-
parison with methods of Tian et al. [47] and Pan et al. [35]. Different rows correspond to
different combinations of blur kernels and noise levels. The first column corresponds to a
low-resolution input middle frame. Next, the second and third columns correspond to the
restored results of Tian et al. [47] and Pan et al. [35], respectively. The fourth column shows
the results of our pipeline. Finally, the last column corresponds to the ground-truth frame.

Video Scratch Removal Comparisons. We performed a quantitative comparison with the
method of Wan et al. [48]. In this experiment, we generated corrupted versions of Vid4 and
Set8 by first adding AWGN with σ = 5 and applying synthetic scratches following Wan et
al. [48]’s protocol. We report PSNR/SSIM metrics in Table 4. Our method outperforms the
competitor’s method. Note that our pipeline takes scratched videos as input while [48] takes
a single scratched frame. A significant performance gap can be explained by our method
leveraging information from the temporal dimension, which is not available in the case of
[48]. On the other hand, [48] takes the mask of the scratched region as input, which simplifies
the restoration process.
Manipulating Real Videos. A real video restoration example is presented in Figure 1. One
can observe the gradual decrease of the blur level in restored frames from left to the right.
Initially, we pass the feature from encoder Ed to backbone Rb and obtain the results in the
4-th column. We manipulate the blur kernel to both more and less blur. We feed the mutator
M with the modified blur kernels to obtain new embeddings to condition the restoration. One
can see the effect from blurry to sharper results.

5 Conclusion
In this paper, we proposed a discriminative learning strategy that helps separate content from
degradation by reasoning on pairs of degraded patches, where both content and degrada-
tion vary independently. The degradation representation is used as conditioning for a video
restoration model that can handle denoising, super-resolution, and scratch removal. More
importantly, the learned representation can be manipulated to fine-tune the results, which is
crucial for real application scenarios.
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