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Motivation & Contribution

 
   Multi-degradation image restoration models have 

   shown impressive results

   In summary

   For real-world applications:
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  • A multi-degradation blind video restoration model

  • Contrastive training to learn an interpretable and 

    controllable degradation representation

  • State-of-the-art results in blind video restoration

  • initial restoration in a blind setting

  • possibility to interpret and manipulate results
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   Benefits of pairwise training strategy 

Denoising & Super-Resolution

Denoising

Example

Continue training the degradation representation 

along the restoration tasks

Using the Moco [1] representation learning framework 

and regression losses for blur and noise
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