

Contrastive Learning for Controllable Blind Video Restoration

Motivation & Contribution

- » Multi-degradation image restoration models have shown impressive results
- » For real-world applications:
- initial restoration in a blind setting
- possibility to interpret and manipulate results
- » In summary
- A multi-degradation blind video restoration model
- Contrastive training to learn an interpretable and controllable degradation representation
- State-of-the-art results in blind video restoration

Degradation Model

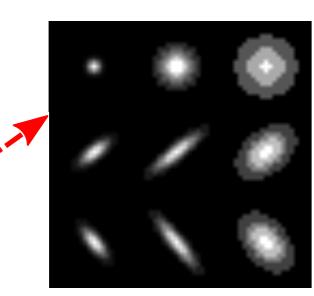
Convolution w. Gaussian Kernel

Downsampling

Noise

Film Scratches

x * k



 $(x * k) \downarrow_s$

 $(x * k) \downarrow_s + n$

 $(x * k) \downarrow_s + n$ $S \circ ($

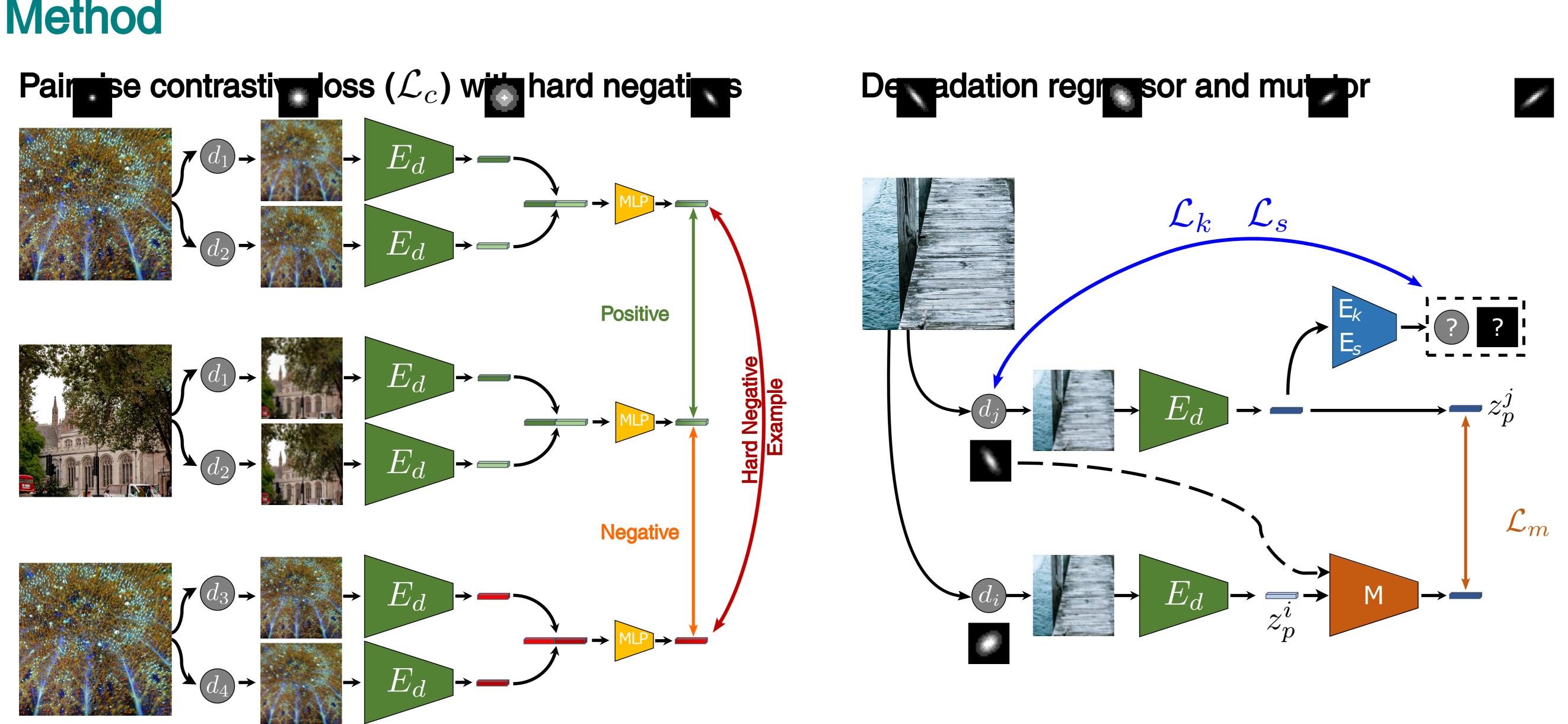
References

-] Momentum contrast for unsupervised visual representation learning, CVPR 2020
-] Blind super-resolution kernel estimation using an internal-gan, NeurIPS. 2019
- 3] Tdan: Temporally-deformable alignment network for video SR, CVPR 2020
- Deep blind video super-resolution, ICCV 2021
-] Designing a practical degradation model for deep blind image SR, ICCV 2021] Unsupervised deep video denoising, ICCV 2021
-] Dvdnet: A fast network for deep video denoising, ICIP 2019
- Fastdvdnet: Towards real-time deep video denoising ..., CVPR 2020
- 9] Bringing old photos back to life, CVPR 2020

Givi Meishvili

Abdelaziz Djelouah

Method



Degradation representation learning

Using the Moco [1] representation learning framework and regression losses for blur and noise

$$\mathcal{L} = \lambda_c \mathcal{L}_c + \lambda_k \mathcal{L}_k + \lambda_s \mathcal{L}_s$$

Degradation Mutator

$$\mathcal{L}_m = \sum_p^{\mathcal{V}} \sum_{i,j}^{\mathcal{D}} \left| M(z_p^i, k_j, \sigma_j) - z_p^j \right|$$

Training for Conditional Video Restoration

Continue training the degradation representation along the restoration tasks

 $\mathcal{L} = \lambda_c \mathcal{L}_c + \lambda_k \mathcal{L}_k + \lambda_s \mathcal{L}_s$ $+\lambda_{SR}\mathcal{L}_{SR}+\lambda_{DN}\mathcal{L}_{DN}$

Super-resolution loss

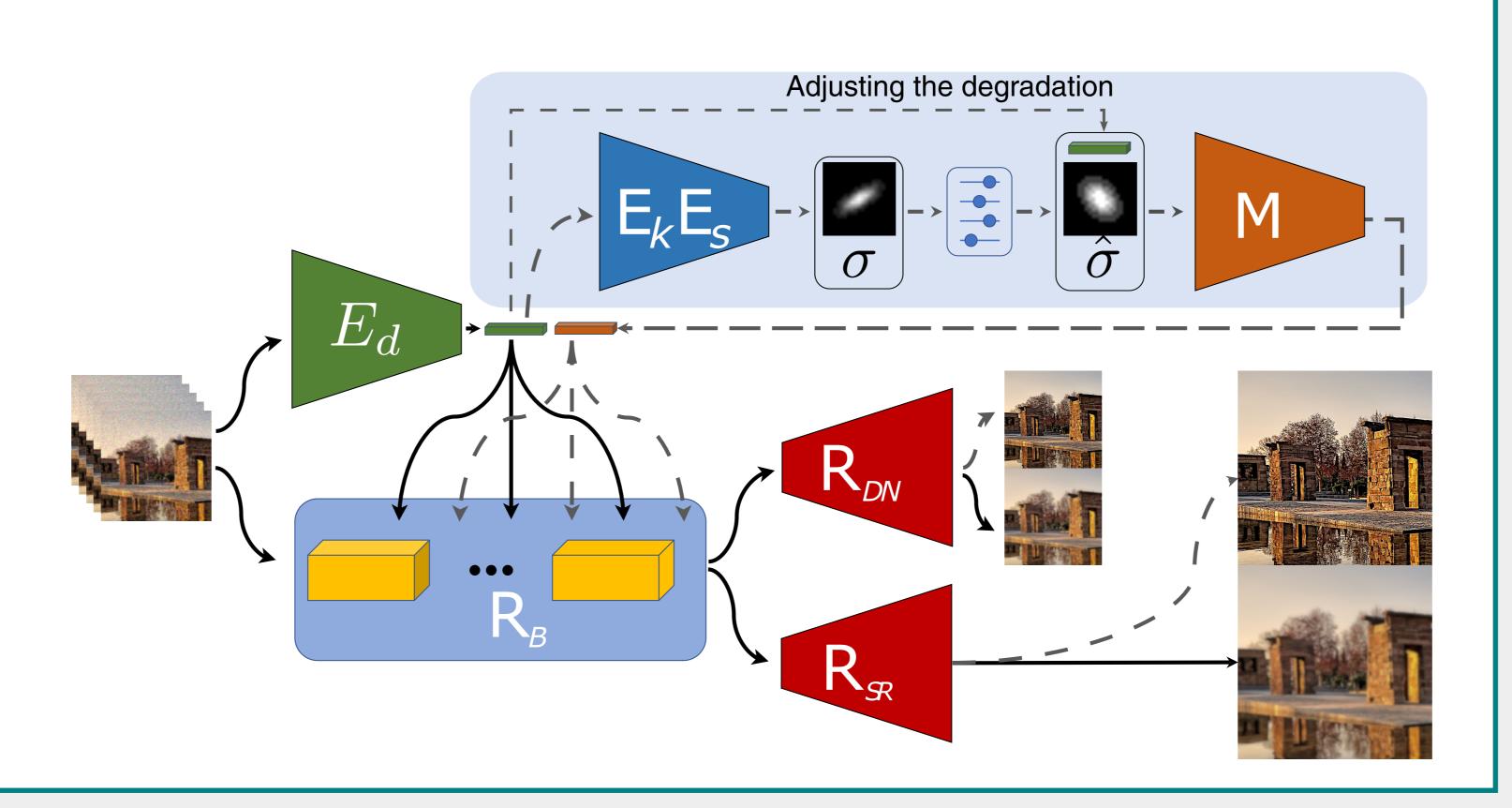
Denoising loss

» Benefits of pairwise training strategy

Example

Feature Contra

Single KernelGAN[Pairwise



Sally Hattori

Christopher Schroers

round-Truth	Pairwis	se Single
asting	MAE↓	Kernel Similarity [↑]
[2]	0.0008 0.0006 0.0005	0.9438 0.9446 0.9821

Experimental Results

Denoisi 🖉 & Super-Resolution				
	PSNR /	SSIM		
Ours Tian et al. [3] Pan et al. [4] Zhang et al. [5]	27.07 /26.09/25.55/25.11/	0.68 0.68		
Denoising				
	VID4	SET		
Ours UDVD [6] DVDnet [7] FastDVD [8]	34.09 / 0.99 32.52 / 0.97 33.07 / 0.97 33.57 / 0.99	33.65 / (32.71/(32.7/(33.14/		

Film Scratch Removal

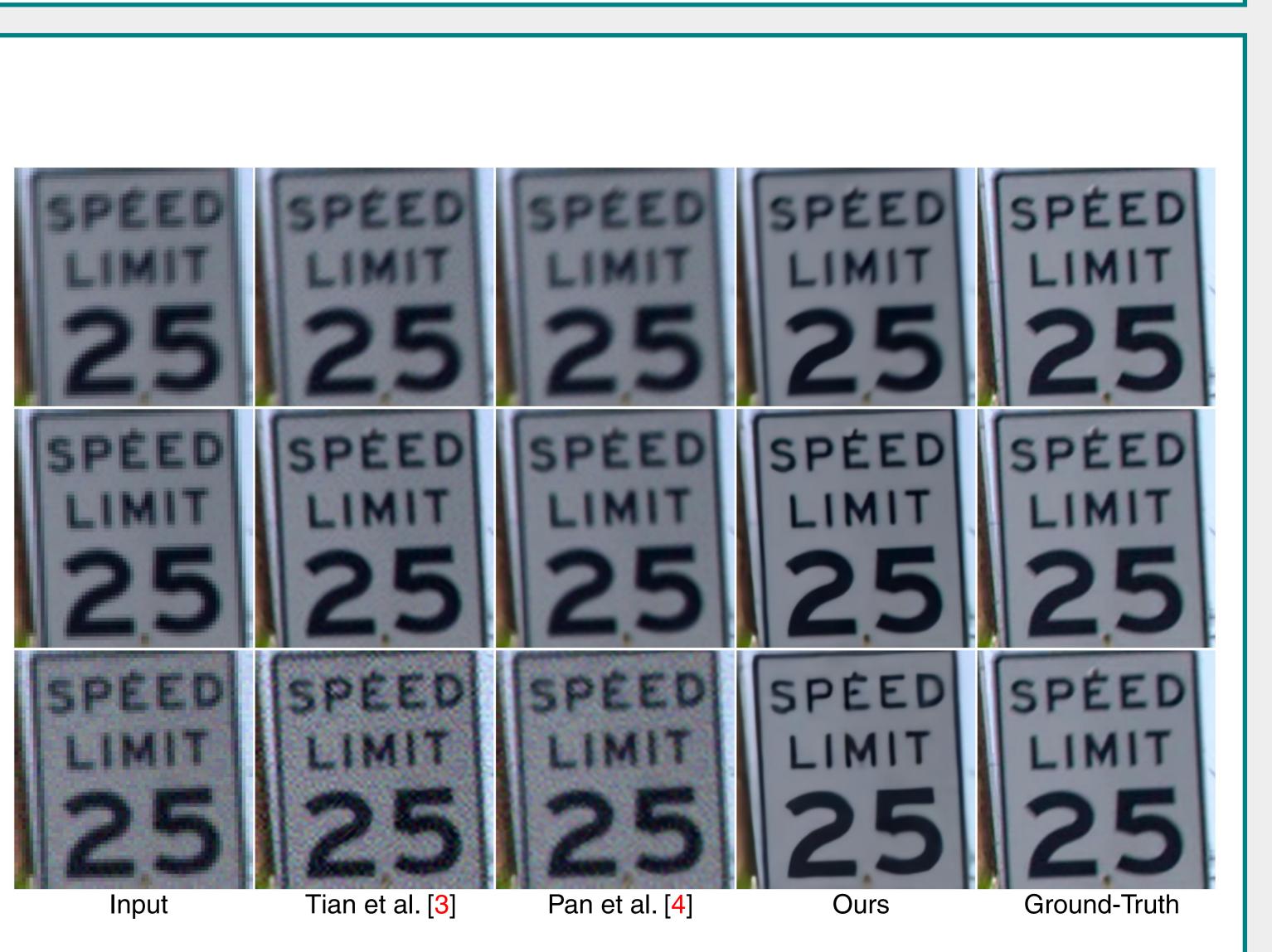
	VID4	SET8
Ours	36.09/0.99	31.93/0.98
Wan et al. [<mark>9</mark>]	24.54/0.83	26.98/0.86

Controllable video restoration

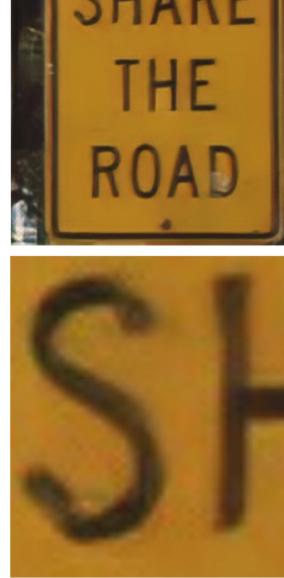
- Settimated Kernel is close to ground truth

» Adjusted Kernel allows for sharper results

ET8 **65**/ 0.98 71/0.95 7/0.95



Input



Wan et al. [<mark>9</mark>]

Ours

Ground-Truth

