
DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE 1

Adapting branched networks to realise
progressive intelligence
Jack Dymond
j.dymond@soton.ac.uk

Sebastian Stein
ss2@soton.ac.uk

Steve R. Gunn
srg@soton.ac.uk

Electronics and Computer Science
University of Southampton
Southampton
United Kingdom

Abstract

Progressive intelligence is a formulation of machine learning which trades-off per-
formance requirements with resource availability. It does this by approaching the in-
ference process incrementally. Current work in this area focuses on overall model per-
formance rather than optimising its complete operating range. In this paper, we build
upon existing explainability and branched neural network research to show how neu-
ral networks can be adapted to exhibit progressive intelligence.

We assess the utility of joint branch optimisation for progressive intelligence using
a number of explainability metrics. When optimising the area under curve of layer-
wise linear probe accuracy we find equally weighted early-exit branch optimisation
produces models with the highest linear probe accuracy throughout the backbone.
By varying confidence thresholds we represent the entire range over which the model
can operate, we then explore its interaction with the scaling of the branched neural
network backbone. Finally, we propose a novel ensemble inference strategy which
utilises repeat predictions and requires no additional optimisation. Experiments with
CIFAR10/100 show that this inference strategy can save up to 44% of the multiply ac-
cumulate operations used in inference whilst maintaining model performance, when
compared against conventional early-exit methods.

1 Introduction

Over the last decade neural networks have been considered the most powerful method for
a number of machine learning tasks such as vision and natural language understanding.
This has prompted an increased demand for these methods in commercial and scien-
tific applications. However, these models are resource-intensive and this is compounded
when considering embedded applications, where resource availability is limited and may
vary at inference time. Hence, to advance the use of neural networks in this domain, con-
sideration must be given to reducing the computational cost in a dynamic manner.

Some progress in model compression has been made through pruning [2, 5, 27] and
quantisation [4, 16, 26]. Recent work has manually designed architectures that are opti-
mised for low-cost inference whilst minimising performance drop [7, 8, 11, 15, 19, 28].

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Blalock, Gonzalezprotect unhbox voidb@x protect penalty @M {}Ortiz, Frankle, and Guttag} 2020

Citation
Citation
{Hayou, Ton, Doucet, and Teh} 2021

Citation
Citation
{Zhang and Stadie} 2020

Citation
Citation
{Guo, Qiu, Leng, Gao, Zhang, Liu, Yang, Zhu, and Guo} 2022

Citation
Citation
{Liu, Ye, Zhou, and Liu} 2020

Citation
Citation
{Yamamoto} 2021

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Kim, Khan, and Kyung} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2018

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

2 DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE

However, in rapidly evolving operating environments such as deployed embedded
systems, model evaluation has moved beyond accuracy alone. Neural networks may need
to dynamically operate in low energy modes whilst still having the ability to match the
performance of the original model at peak operating modes. Such operating scenarios
will value systems which produce low-cost–lower-confidence outputs that can be im-
proved upon according to operating requirements. We refer to these as progressive intelli-
gence systems and the concept of Pareto-optimisation takes a central role in their design,
as performance should be maximised at every computational cost point (Figure 1).

Cost

Pe
rfo

rm
an

ce

Progressive Intelligence
Model

Conventional Model

Figure 1: Progressive intelligence systems can operate across a range of performance-cost
points whilst valuing low-cost gains in performance, whereas the conventional models
operate at a fixed operating point. The conventional models are the least progressive due
to their fixed nature, followed by the blue progressive intelligence model, as its perfor-
mance gains are made predominantly at the end of the operating range. The most pro-
gressive models make early improvements and build upon them monotonically, like the
green and orange models.

Current work in the literature [10, 23, 25] does not consider the complete operating
range a dynamic model can operate over. This can be considered from a layer-wise per-
spective where improvements can be made to internal neural network representations.
We refer to the total layer-wise activations of a model as its representations. A model’s
operating range can also be considered in terms of the inference process where perfor-
mance can be optimised across a continuous range of operating modes, rather than dis-
crete points. The following contributions of our work address these gaps:

• We introduce progressive intelligence and how it can be incorporated into all as-
pects of the design and optimisation of branched neural networks.

• We present a novel investigation into the effect classification branches have on their
backbone using a variety of explainability metrics. This shows how branches im-
prove neural network representations in a layer-wise fashion and how they can be
used to make progressive intelligence models.

• We use the scaling of classification confidence thresholds as a way of representing
the inference cost of branched neural networks in a continuous manner. We re-
fer to these as inference modes and they allow the performance of the model to be
understood over its entire operating range.

Citation
Citation
{Hu, Chen, Wang, and Wang} 2020

Citation
Citation
{Teerapittayanon, McDanel, and Kung} 2016

Citation
Citation
{Wolczyk, W{ó}jcik, Ba{T1l }azy, Podolak, Tabor, {‚}mieja, and Trzcinski} 2021

DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE 3

• We vary backbone scaling and design to understand how they effect the inference
modes, allowing us to understand how to best use model design to influence the
performance of a branched neural network across its operating range.

• We introduce a new early-exit policy for branched networks resulting in up to 44%
MAC operations improvement in inference over conventional approaches, without
the need for additional optimisation.

We begin with related work which is covered in Section 2. Then we investigate the effect
that classification branches have on intermediate layers of a branched neural network us-
ing a variety of metrics and propose an optimal branched network configuration (Section
3). We then present a new analysis of branched network inference modes in Section 4
and investigate the backbone architecture and its interaction with the inference modes.
In Section 5, an optimised inference method for branched networks is proposed, which
we call entropic mutual agreement. Conclusions are drawn in Section 6.

2 Related Work

Since their inception [22, 23], branched networks have remained an integral part of the
dynamic inference research community [9, 10, 24], and more recently the development
of optimised inference techniques for them [3, 14].

Work in [21] treats the branches of the network as an ensemble, encouraging diversity
between the branches of a language model whilst also preserving their accuracy on the
classification task. Work in [25] applies a similar approach to vision models. To introduce
information sharing between the classifiers and boost performance they train their early
exiting branches as an ensemble, unlike previous works in the vision space. However, this
is achieved through additional optimisation. The field has yet to produce an ensemble
method in branched network inference that does not require additional optimisation; this
is something we address in Section 5.

Previous work in the field fails to consider the entire operating range of a branched
neural network and evaluates them at discrete points in the performance-cost space. This
is particularly relevant to the progressive intelligence problem as it will allow a complete
operating range of a model to be characterised, as in Figure 1. We examine this further in
Section 4.

Recent explainability work uses a measure of class separation throughout the net-
work [13], to understand how the classes are distinguished by the model. Centered Kernel
Alignment (CKA) has also been proposed to compare network representations by produc-
ing pairwise comparisons between the intermediate outputs of every layer of one neu-
ral network with that of another. This has been used to analyse different loss functions,
model sizes, and architectures. [12, 17, 18].

Finally, intermediate classifiers known as linear probes have been proposed as a method
of measuring layer-wise class separability [1]. They have also been used in conjunction
with some of the above methods in other work [13, 17]. When combined with class sepa-
ration it can help understand the utility of class separation in classification.

Branched networks are a good starting point for a progressive intelligence system and
the methods discussed can allow their inner workings to be probed. These concepts have
yet to be combined and the next section will address this.

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2014

Citation
Citation
{Teerapittayanon, McDanel, and Kung} 2016

Citation
Citation
{Hu, Dey, Hebert, and Bagnell} 2019

Citation
Citation
{Hu, Chen, Wang, and Wang} 2020

Citation
Citation
{{Wang}, {Shen}, {Hu}, {Xu}, {Nguyen}, {Baraniuk}, {Wang}, and {Lin}} 2020

Citation
Citation
{Dai, Kong, and Guo} 2020

Citation
Citation
{Laskaridis, Venieris, Almeida, Leontiadis, and Lane} 2020

Citation
Citation
{Sun, Zhou, Liu, Zhang, Jiang, Cao, Huang, and Qiu} 2021

Citation
Citation
{Wolczyk, W{ó}jcik, Ba{T1l }azy, Podolak, Tabor, {‚}mieja, and Trzcinski} 2021

Citation
Citation
{Kornblith, Lee, Chen, and Norouzi} 2020

Citation
Citation
{Kornblith, Norouzi, Lee, and Hinton} 2019

Citation
Citation
{Nguyen, Raghu, and Kornblith} 2021

Citation
Citation
{Raghu, Unterthiner, Kornblith, Zhang, and Dosovitskiy} 2021

Citation
Citation
{Alain and Bengio} 2017

Citation
Citation
{Kornblith, Lee, Chen, and Norouzi} 2020

Citation
Citation
{Nguyen, Raghu, and Kornblith} 2021

4 DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE

3 The Effect of the Loss Function

To thoroughly explore the representational impact of branches and gain some insight into
how the network behaves when using them we use the three explainability metrics of
class separation, linear probe accuracy, and CKA. These metrics are applied to all layers
except the final classification layer using a test data set to probe the generalisation of these
results.

To measure class separation we use a metric defined in [13] as R2. The metric takes the
ratio of the similarity within a class to that across all classes. Taking one minus this value
ensures greater values signify greater class separation and it employs the cosine similarity,
according to

R2 = 1−
∑K

k=1

∑Nk
m=1

∑Nk
n=1(1− sim(XXX k,m , XXX k,n))/(K N 2

k)∑K
j=1

∑K
k=1

∑N j

m=1

∑Nk
n=1(1− sim(XXX j ,m , XXX k,n))/(K N j Nk)

. (1)

Here, XXX refers to the activation of an input, n and m refer to a datapoint within the
class k and j . Nk and N j refer to the number of samples within the class and K the total
number of classes.

The performance of linear classifiers on the embedding space will reflect the sepa-
rability of the data. We refer to these as linear probes [1]. We choose to optimise the
networks based on linear probe performance, as this metric is directly related to the clas-
sification performance at each exit. Maximising the linear probe performance throughout
the network backbone should correspond to improved early exit performance.

We train ResNet18 [6] with four branches positioned equidistantly throughout the
model (where the final branch corresponds to the output), according to

Ltot al (ŷ , y ;θ) =
N∑
n

wnLn(ˆyexi t , y ;θ), (2)

choosing a range of branch weightings, wn . A selection of the results are presented in
Figure 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer-Wise Model Depth

10 1

100

R
2

Weightings- (E1 : E2 : E3 : E4)
(0.0 : 0.0 : 0.0 : 1.0)
(0.2 : 0.0 : 0.0 : 0.8)
(0.2 : 0.2 : 0.0 : 0.6)
(0.2 : 0.0 : 0.2 : 0.6)
(0.2 : 0.2 : 0.2 : 0.4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer-Wise Model Depth

0.5

0.6

0.7

0.8

Lin
ea

r P
ro

be
 A

cc
ur

ac
y

Weightings- (E1 : E2 : E3 : E4)
(0.0 : 0.0 : 0.0 : 1.0)
(0.2 : 0.0 : 0.0 : 0.8)
(0.2 : 0.2 : 0.0 : 0.6)
(0.2 : 0.0 : 0.2 : 0.6)
(0.2 : 0.2 : 0.2 : 0.4)

Figure 2: Log of the R2 metric (left), Linear probe accuracy (right), for different branch
weightings of the ResNet18 architecture against layer. The dashed grey lines denote the
branch positions in the network and the red line in both figures corresponds to the un-
branched ResNet18 architecture. Results were evaluated on CIFAR10 and the width of the
lines denote the variance across 3 runs.

Citation
Citation
{Kornblith, Lee, Chen, and Norouzi} 2020

Citation
Citation
{Alain and Bengio} 2017

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE 5

The linear probes capture the separability of the classes whereas the R2 metric cap-
tures the magnitude of the actual class separation of the classes. We find that the early
branches have a small effect in separating the classes in the representation space, but a
large impact in class separability.

Branches positioned later in the network have a greater impact on class separation
and the level of class separation at the beginning of the network is increased by the intro-
duction of the first branch. The separation values largely increase monotonically through-
out where each branch increases the class separation in the network at its point of con-
nection, but this is followed by a small drop.

The increase in class separation from the early branch corresponds to increased lin-
ear probe accuracy. However, the joint optimisation of the final layer prevents the class
separation from reaching greater values.

This suggests that restricting class separation early in the model is important for peak
classification performance later in the model. However, the linear probe accuracy plot
shows that representations created by branched models still allow for greater accuracy
earlier in the network. Suggesting that co-optimising the branches allows the class sepa-
ration to increase without drastically decreasing final layer performance.

To quantify our results we use the area under curve (AUC) of linear probe curves in Fig-
ure 2 to give an overall measure of the model’s pareto front. For each weight configuration,
table 1 presents the AUC and the raw and fractional improvement over the unbranched
model.

Table 1: AUC measurements of all branch configurations. Branch weighting is shown in
the first column, raw AUC is shown in the second, the third and fourth show raw and
fractional improvement over the baseline respectively. The best performing of the single
and multiple weighted models are shown in bold.

w - (Exit 1 : Exit 2 : Exit 3 : Final Exit) AUC Raw ↑ (%) Frac. ↑ (%)

Baseline: (0.0 : 0.0 : 0.0 : 1.0) 0.6878 - -
(0.2 : 0.0 : 0.0 : 0.8) 0.7276 3.98 5.78
(0.4 : 0.0 : 0.0 : 0.6) 0.7266 3.88 5.64
(0.6 : 0.0 : 0.0 : 0.4) 0.7217 3.39 4.93
(0.8 : 0.0 : 0.0 : 0.2) 0.7262 3.84 5.58
(0.0 : 0.2 : 0.0 : 0.8) 0.7096 2.18 3.16
(0.0 : 0.4 : 0.0 : 0.6) 0.7093 2.15 3.13
(0.0 : 0.6 : 0.0 : 0.4) 0.7099 2.21 3.21
(0.0 : 0.8 : 0.0 : 0.2) 0.7078 2.0 2.91
(0.0 : 0.0 : 0.2 : 0.8) 0.6926 0.48 0.69
(0.0 : 0.0 : 0.4 : 0.6) 0.6932 0.54 0.78
(0.0 : 0.0 : 0.6 : 0.4) 0.6919 0.41 0.6
(0.0 : 0.0 : 0.8 : 0.2) 0.6937 0.59 0.86
(0.2 : 0.3 : 0.1 : 0.4) 0.7308 4.3 6.26
(0.2 : 0.2 : 0.2 : 0.4) 0.7345 4.67 6.79
(0.2 : 0.1 : 0.3 : 0.4) 0.7317 4.39 6.39

6 DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE

The results in table 1 suggest that weighting the early branches is most effective when
using a single branch. As these branches increase performance early in the network where
larger gains can be made. Hence, the area under these curves is improved the most, up
to 5.7%. Branches positioned in the third position show little improvement over the base-
line model, less than 1%. There is little difference in the AUC measurements for a given
branch position, suggesting that branch positioning has a greater effect than weighting
when using this metric. When using multiple branches, equally weighting the branches
maximises the AUC and thus the overall performance of the model.

CKA has been shown empirically to be maximised between two architecturally iden-
tical layers of two neural networks [12]. Thus, we use this to understand the representa-
tional similarities between networks trained with branches and those without, allowing
us to capture how similarly the networks transform the data. When using linear kernels it
can be defined as

CKA(Xi ,Y j) =
HSIC(Xi X⊤

i ,Y j Y⊤
j)√

HSIC(Xi X⊤
i ,Xi X⊤

i)
√

HSIC(Y j Y⊤
j ,Y j Y⊤

j)
, (3)

where Xi , Y j are the activations from layers i and j respectively and HSIC refers to the
Hilbert-Schmidt-Independence-Criterion [20] which measures the statistical dependence
between two distributions; in this work the distributions correspond to the layer repre-
sentations. Let K = k(Xi ,Xi) and L = l (Y j ,Y j) where k and l are two kernels, the HSIC is
defined as

HSIC(K,L) = 1

(n −1)2 trace(KHLH), (4)

where H is the centering matrix defined as Hn = In− 1
n 11⊤, which centers the two matrices

in kernel space. We use linear kernels for our analysis and generate a pairwise comparison
between the intermediate output of every layer of one neural network and that of another
(Figure 3).

ResNet18 Layers

Re
sN

et
18

 L
ay

er
s

Branched ResNet18 Layers 0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Centred kernel alignment scores between different networks using CIFAR10.
Two architecturally identical ResNet18 models (left), a ResNet18 network, and a branched
ResNet18 trained with the (0.2 : 0.2 : 0.2 : 0.4) loss weighting configuration (right). The
bottom left square on each diagram corresponds to the first layer of each network, and
the top right the final layer.

Citation
Citation
{Kornblith, Norouzi, Lee, and Hinton} 2019

Citation
Citation
{Song, Smola, Gretton, Bedo, and Borgwardt} 2012

DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE 7

The similarity between the branched and unbranched networks never reaches the
maximum values, peaking at ∼0.95 in the early layers. Throughout the rest of the net-
work the maximum similarity at a given layer lies between 0.8 and 0.9. In the branch posi-
tions there is a clear shift in the similarities of the earlier layers of the branched networks
towards the later layers of the unbranched networks. The departure from the diagonal
suggests that the branched model is learning similar representations to the unbranched
model and that the branches push these earlier in the network.

While improvements to the progressiveness of the networks are evident both quali-
tatively from Figures 2 and 3, and quantitatively from table 1, it is not evident how this
progressiveness transfers to the inference modes, and thus resource savings of such net-
works. We address this in the next section.

4 The Effect of the Backbone

Early exiting inference uses the intermediate output of the network to determine whether
the classification is confident enough. This intermediate output will be produced by the
branches which are co-optimised with the backbone. If only the layers preceding the
intermediate output are computed, performing an early exit will save the inference cost
of subsequent layers for a given input.

An integral part of the early exiting inference is the criteria determining the confidence
of classification. The most commonly used metric for confidence is the entropy of the
output distribution[10, 23]. The entropy is defined as

e(x) =−
C∑

i=1
p(xi) log p(xi), (5)

and an exit is taken if it is less than or equal to a threshold. Here, p(xi) refers to the prob-
ability of the i th class in the output distribution x, and C is the total number of classes.
Hence, the entropy is minimised when one class probability approaches one and max-
imised when all of the class probabilities are equal.

We run inference on the networks and vary the entropy threshold for early exiting,
from the maximum possible value of logC , to the lowest possible value, 0. This generates
a curve denoting the possible operating points of the network when plotting the average
multiply accumulate operations (MACs) usage against accuracy. We refer to these as in-
ference modes. In Figure 4 (top-left) we compare the branched networks trained with
different weight configurations.

The highest performing model is that with progressively higher weighted branches.
However, the one with the sharpest rise in accuracy is the model with equally weighted
branches. Furthermore, the peak accuracy of this network matches the others within its
error bounds. Hence, we use this weight configuration for the remainder of our experi-
ments, due to its performance in table 1, in inference, and its simplicity in training setup.

To analyse the effect the backbone has on this distribution we scale the networks. We
present MACs vs accuracy plots for ResNet architectures of varied width, depth, and num-
ber of branches. Uncertainty is calculated using standard deviations from the mean ac-
curacy value. By assuming the accuracy of the model represents a point of a Gaussian, we

can define the confidence interval as ∆ = σ
√

A(1−A)
n , where σ represents the number of

standard deviations from the mean, n the number of samples, and A the mean accuracy.
For the following results, a σ of 3 is used corresponding to a certainty of 99.7%.

Citation
Citation
{Hu, Chen, Wang, and Wang} 2020

Citation
Citation
{Teerapittayanon, McDanel, and Kung} 2016

8 DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Multiply Accumulate Operations 1e8

0.84

0.86

0.88

0.90

0.92

0.94

Te
st

 A
cc

ur
ac

y

BranchedResNet18 (0.2 : 0.2 : 0.2 : 0.4)
BranchedResNet18 (0.2 : 0.3 : 0.1 : 0.4)
BranchedResNet18 (0.2 : 0.1 : 0.3 : 0.4)
BranchedResNet18 (0.1 : 0.2 : 0.3 : 0.4)

106 107 108 109

Multiply Accumulate Operations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

width: 5%
width: 10%
width: 25%
width: 50%
width: 100%
width: 200%
width: 250%

108 109

Multiply Accumulate Operations

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

10 layer
18 layer
34 layer
50 layer
60 layer
70 layer

108 2 × 108 3 × 108 4 × 108 6 × 108

Multiply Accumulate Operations

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y
3 branches
4 branches
5 branches
6 branches
7 branches
8 branches

Figure 4: Figures analysing the inference modes of various networks, highlight their oper-
ating ranges. The networks trained in Section 3 are compared (top-left). Then the effect
of the network width is shown (top-right). Network depth is analysed (bottom-left). The
effect of the number of branches is also analysed (bottom-right). Results are taken from
CIFAR10. Shaded areas denote a confidence interval of 3σ, in all cases a ResNet18 is used
and the architectural component modified is denoted in the legend.

The effect of the width in the ResNet18 architecture is presented in Figure 4 (top-right).
It has a consistent effect on the MAC usage of the model, without drastically affecting
the classification performance of the model. The performance drop-off starts between a
width of 50% and 25%, as the performance of the 50% width model matches the full-size
model within the confidence bound. The larger widths do not increase the accuracy out-
side of the confidence intervals for this dataset. The MACs scale according to the expected
ratio (W1/W2)2 between two models, where W refers to their respective widths.

The early exiting can at most save ∼ 50% of the inference cost (in the far right-hand
model), with minimal loss in accuracy, whereas thinning the same model to the standard
width has the potential to save ∼ 84%. As the model is compressed in width, the benefit
of the branching is reduced with the thinner network dropping performance sooner than
the wider networks.

The depth of these networks is also analysed, whilst keeping the width consistent with
the ResNet18 design. This is shown in Figure 4 (bottom-left). We find that the shallower
model has a dramatically reduced minimum accuracy and power range. There are also
diminishing returns when using deeper networks. The peak operating powers follow what
is expected as there should be a linear relationship between the power used and the depth,
but this drops off in deeper models due to the nature of the convolution operation.

The number of equally weighted branches is varied between 3 and 8, shown in Figure 4
(bottom-right). The final branch was given a weight of 0.4 in all cases, the others were
hence weighted 0.6/nbranches. Increasing the number of branches extends the operating

DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE 9

range of the neural network, although at reduced accuracy. The six and seven branched
models extend the operating range without significantly compromising the performance
at the greater confidence ranges, unlike the 8 branch model. There seems to be no com-
putational benefit of using any less than four branches.

Hence, we have found that width has the greatest potential for changing the oper-
ating range of the progressive intelligence network. This can be extended using deeper
networks with a larger number of branches.

We also use a more efficient backbone, to understand if these inference mode patterns
are backbone agnostic. We use the MobileNet architecture [7, 8, 19]. This is presented in
Figure 5 (top-left). We find that when trained using the same hyperparameters, the more
efficient architecture is outperformed by the ResNet18, but it operates in a lower power
range. We now move our attention to the exit policy of the network to understand how
inference modes can be improved for progressive intelligence.

5 The Effect of the Exit Policy

107 108

Multiply Accumulate Operations

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

BranchedResNet18 (0.2 : 0.2 : 0.2 : 0.4)
BranchedMobileNet (0.2 : 0.2 : 0.2 : 0.4)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Multiply Accumulate Operations 1e8

0.62

0.64

0.66

0.68

0.70

0.72

Ac
cu

ra
cy

ResNet18

Random
Mutual Agreement
Entropic
Entropic Mutual Agreement

012345
Entropy Threshold

1.0

1.2

1.4

1.6

1.8

Po
we

r I
m

pr
ov

em
en

t (
x)

ResNet18
MobileNet

1073 × 106 4 × 106 6 × 106 2 × 107

Multiply Accumulate Operations
0.54

0.56

0.58

0.60

0.62

0.64

0.66

Ac
cu

ra
cy

MobileNet

Random
Mutual Agreement
Entropic
Entropic Mutual Agreement

Figure 5: Various figures analysing the inference modes of the entropic mutual agree-
ment exit policy. The MobileNet and ResNet18 architectures are compared (top-left). The
mutual agreement exit policy is shown on both the ResNet18 (top-right) and MobileNet
(bottom-right). Finally, the power improvement made at a given entropy value is pre-
sented for each network (bottom-left). All results are taken from the CIFAR100 test set
and shaded areas denote the variance across 3 runs.

We introduce a new exit policy designed to increase the progressiveness of the branched
neural network, the mutual agreement policy. Most early exiting algorithms in the field
fail to consider the branched neural network as a special ensemble and those that do re-
quire additional optimisation post-training [25].

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Wolczyk, W{ó}jcik, Ba{T1l }azy, Podolak, Tabor, {‚}mieja, and Trzcinski} 2021

10 DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE

Our policy considers two aspects, consistency between branches and confidence at a
branch. It exits when a branch is consistent with its previous branch, or if the entropy of
the prediction is below a threshold. We call this entropic mutual agreement and the exit
condition is defined as

ei (x) ≤α∨ Ŷi (x) · Ŷi−1(x) = 1, (6)

where e is the entropy at exit i , α the entropy threshold, and Y a one-hot encoded output.
We present comparisons between these loss functions in both architectures in Fig-

ure 5 (top/bottom-right). Figure 5 (bottom-left) shows a comparison between the two
loss functions, measuring the power saved by the new exit policy for a given entropy level.
From these figures, it is clear the new loss function rises earlier than the entropic policy,
and stops sooner, without losing the peak performance of the network. Hence, this makes
the network more progressive in offering low-cost inference and more resource efficient
at all confidence thresholds. The power improvement peaks at over 1.8× (44% saving)
improvement in the MobileNet, and 1.6× (38% saving) in the ResNet18.

6 Conclusions

Progressive intelligence is a framework of machine learning in which the system adapts to
produce the best possible outputs according to resource availability. This has a number
of applications, namely in dynamic operating environments such as deployed systems
on embedded devices, computing servers with variable resource availability, or mobile
devices with power-saving modes. A core principle of these systems is pareto-optimality,
where multiple objectives are to be maximised.

This work presents branched neural networks as a progressive intelligence system and
explores the various ways in which they can be improved and pushed toward pareto-
optimality. Various explainability measures are used to understand the effect classifica-
tion branches have on the inner workings of neural networks when included in the loss
function. Linear probe accuracy is used to quantify the progressiveness of intermedi-
ate representations in the networks. An optimal branch configuration is identified which
maximises the pareto-optimality of the neural network’s inner workings.

We present a method of analysing the inference process of a branched neural net-
work that shows the progressive nature of early exiting policies. This allows the operating
range of networks to be understood. Using this tool, we analyse several different con-
figurations of a branched ResNet architecture, to understand better how these changes
interact with the operating range of early exiting inference. We find changing the depth
and width moves the range over which a model can operate. Whilst changing the number
of branches extends the range over which the model can operate. Finally, a new early exit-
ing policy is devised, utilising consecutive branch outputs in inference. We find this policy
records up to 44% inference cost saving, without the need for additional optimisation.

Future work will investigate new progressive intelligence systems co-designed, and
analysed using, the ideas and analysis techniques presented in this work. Such systems
will require that they can be modified to produce incremental results, for example, an en-
semble system could be configured to operate in such a manner. This work has provided
a proof of concept and shown that progressive intelligence can be implemented through
the optimisation of branched networks, and should act as a foundation for future imple-
mentations of progressive intelligence systems.

DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE 11

Acknowledgements

This work was supported and funded by: The UK Research and Innovation (UKRI) Centre
for Doctoral Training in Machine Intelligence for Nano-electronic Devices and Systems
[EP/S024298/1]; the UKRI Turing AI Acceleration Fellowship on Citizen-Centric AI Sys-
tems [EP/V022067/1]; the Defence Science and Technology Laboratory (DSTL).

References

[1] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using lin-
ear classifier probes. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. OpenRe-
view.net, 2017. URL https://openreview.net/forum?id=HJ4-rAVtl.

[2] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What
is the state of neural network pruning? Proceedings of machine learning and systems,
2:129–146, 2020.

[3] Xin Dai, Xiangnan Kong, and Tian Guo. Epnet: Learning to exit with flexible multi-
branch network. In Proceedings of the 29th ACM International Conference on Infor-
mation & Knowledge Management, CIKM ’20, pages 235–244, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450368599. doi: 10.1145/
3340531.3411973. URL https://doi.org/10.1145/3340531.3411973.

[4] Cong Guo, Yuxian Qiu, Jingwen Leng, Xiaotian Gao, Chen Zhang, Yunxin Liu, Fan
Yang, Yuhao Zhu, and Minyi Guo. SQuant: On-the-fly data-free quantization via
diagonal hessian approximation. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=JXhROKNZzOc.

[5] Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. Robust
pruning at initialization. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=vXj_ucZQ4hA.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[7] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1314–1324, 2019.

[8] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications, 2017.

[9] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and J Andrew Bagnell. Learning
anytime predictions in neural networks via adaptive loss balancing. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 3812–3821, 2019.

https://openreview.net/forum?id=HJ4-rAVtl
https://doi.org/10.1145/3340531.3411973
https://openreview.net/forum?id=JXhROKNZzOc
https://openreview.net/forum?id=vXj_ucZQ4hA

12 DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE

[10] Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. Triple wins:
Boosting accuracy, robustness and efficiency together by enabling input-adaptive
inference. arXiv preprint arXiv:2002.10025, 2020.

[11] Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min Kyung. Efficient neural
network compression. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12569–12577, 2019.

[12] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Simi-
larity of neural network representations revisited. In International Conference on
Machine Learning, pages 3519–3529. PMLR, 2019.

[13] Simon Kornblith, Honglak Lee, Ting Chen, and Mohammad Norouzi. What’s in a
loss function for image classification? CoRR, abs/2010.16402, 2020. URL https:
//arxiv.org/abs/2010.16402.

[14] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D Lane. Spinn: synergistic progressive inference of neural networks over
device and cloud. In Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking, pages 1–15, 2020.

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture
search. In International Conference on Learning Representations, 2018.

[16] Xingchao Liu, Mao Ye, Dengyong Zhou, and Qiang Liu. Post-training quantiza-
tion with multiple points: Mixed precision without mixed precision. arXiv preprint
arXiv:2002.09049, 2020.

[17] Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks
learn the same things? uncovering how neural network representations vary with
width and depth. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=KJNcAkY8tY4.

[18] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey
Dosovitskiy. Do vision transformers see like convolutional neural networks? Ad-
vances in Neural Information Processing Systems, 34, 2021.

[19] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[20] Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt. Feature
selection via dependence maximization. Journal of Machine Learning Research, 13
(5), 2012.

[21] Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu Zhang, Hao Jiang, Zhao Cao,
Xuanjing Huang, and Xipeng Qiu. Early exiting with ensemble internal classifiers.
arXiv preprint arXiv:2105.13792, 2021.

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions, 2014.

https://arxiv.org/abs/2010.16402
https://arxiv.org/abs/2010.16402
https://openreview.net/forum?id=KJNcAkY8tY4

DYMOND, STEIN, GUNN: BRANCHED NETWORKS FOR PROGRESSIVE INTELLIGENCE 13

[23] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast
inference via early exiting from deep neural networks. In 2016 23rd International
Conference on Pattern Recognition (ICPR), pages 2464–2469. IEEE, 2016.

[24] Y. Wang, J. Shen, T. K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang, and Y. Lin. Dual dy-
namic inference: Enabling more efficient, adaptive, and controllable deep inference.
IEEE Journal of Selected Topics in Signal Processing, 14(4):623–633, 2020.

[25] Maciej Wolczyk, Bartosz Wójcik, Klaudia Bałazy, Igor T. Podolak, Jacek Tabor, Marek
Śmieja, and Tomasz Trzcinski. Zero time waste: Recycling predictions in early exit
neural networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=14-dXLRn4fE.

[26] Kohei Yamamoto. Learnable companding quantization for accurate low-bit neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5029–5038, 2021.

[27] Shunshi Zhang and Bradly C. Stadie. One-shot pruning of recurrent neural networks
by jacobian spectrum evaluation. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=r1e9GCNKvH.

[28] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

https://openreview.net/forum?id=14-dXLRn4fE
https://openreview.net/forum?id=14-dXLRn4fE
https://openreview.net/forum?id=r1e9GCNKvH

