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Abstract

Vision Transformers have recently gained popularity due to their superior perfor-
mance on visual computing tasks. However, this performance is based on training with
huge datasets, and maintaining the performance on small datasets remains a challenge.
Regularization helps to alleviate the overfitting issue that is common when dealing with
small datasets. Most existing regularization techniques are designed keeping ConvNets
in mind. As Vision Transformers process images differently, there is a need for new reg-
ularization techniques crafted for them. In this paper, we propose a regularization called
PatchSwap, which interchanges the patches between two images, resulting in a new in-
put for regularizing the transformer. Our extensive experiments showcase that PatchSwap
yields superior performance than existing state-of-the-art methods. Further, the simplic-
ity of PatchSwap makes a straightforward extension to a semi-supervised setting with
minimal effort.

1 Introduction
Transformers were originally designed for natural language processing [28] but their appli-
cation to other domains is rapidly gaining traction [1, 16]. In computer vision, Convolution
neural networks (ConvNets) have been the traditional choice of deep learning framework for
image recognition task for almost a whole decade [3, 4, 12, 17, 22, 25]. However, in 2020,
Vision Transformers (ViT) has created a new benchmark by outperforming ConvNets [9] on
ImageNet dataset. Nevertheless, this is the case only when there is abundant training data
available. Multiple attempts are being made to adapt a Vision Transformer to small datasets
by modifying the transformer architecture [11, 14, 20], distillation [27], etc.

The major challenge when dealing with small datasets is that a Vision Transformer often
overfits and results in poor generalization. To combat overfitting, commonly used regulariza-
tion solutions are dropout [23], weight decay [10], label smoothing [24], batch normalization
[15], data augmentations [5, 6]. Other advanced augmentation techniques like Mixup [32],
Cutmix [31] create intermediate images by combining multiple images. All of these have be-
come a staple part of training ConvNets as well as Vision Transformers [11, 13]. Although
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Mixup and Cutmix work well for both these network types, they were originally designed
for ConvNets, which raises the question - can we design data augmentation specialized for
Vision Transformers to boost their performance? Both the network types take image input
and predict its label but differ in the way they process the images. ConvNets process an
image spatially like a grid and uses kernels to extract features whereas Vision Transformer
divides the image into fixed size patches and uses self-attention mechanism. ConvNets have
constraints of spatial equivariance inbuilt into them which is essential for modeling vision
data. On the other hand, Vision Transformers do not have such constraints and must learn to
model spatial equivariance from large amounts of data [9].

Keeping Vision Transformers in mind, we propose PatchSwap, a simple yet novel data
augmentation technique that interchanges the patches of images to increase the amount of
training data and thereby regularizes the performance. PatchSwap shares multiple similari-
ties with Mixup and Cutmix, including (i) preventing overfitting by regularizing the network
by mixing images and labels; (ii) linearly interpolating the image consistently within the
label space. However, Mixup and Cutmix do not fully utilize the global receptive field of
Vision Transformers. ConvNets grow their receptive field with depth whereas a Vision Trans-
former can learn to interact between any pair of pixels from the beginning at the input layer
encoders [9]. Hence, the related patches can be any where in the image and Vision Trans-
former extract relevant information from them. Based on this understanding, our approach
divides two images into patches and then randomly swaps patches between them to create
a PatchSwap image (Figure 1). Similar to Cutmix, PatchSwap images contain regions from
both classes, but the objects are scattered throughout the PatchSwap image, and the Vision
Transformer is trained to predict the objects with their mixing ratios.

In this paper, we showcase PatchSwap as an effective regularization technique for Vi-
sion Transformers. It outperforms state-of-the-art methods for datasets like CIFAR-10 and
CIFAR-100. We also show that PatchSwap not only regularizes effectively but can also be
utilized with unlabeled data (extending to a semi-supervised learning setting). Most of the
existing semi-supervised techniques are based on consistency regularization, where a net-
work is trained to produce the same output for two versions of an input image. Unsupervised
PatchSwap works on the same principle. Since the PatchSwap images contain a mix of
objects from different images, the consistency regularization between the original and the
PatchSwap image cannot be implemented. However, if we create two different PatchSwap
images of two inputs and ensure that their mixing coefficients are the same, we can train the
Vision Transformer to produce consistent outputs for these PatchSwap images. In essence,
unsupervised PatchSwap applies the consistency regularization between two PatchSwap im-
ages.

The organization of our paper is as follows: Section 2 discusses the work related to our
approach. Section 3 presents our proposed approach in supervised and unsupervised set-
tings. Section 4 discusses our experiments and its comparison with the baseline approaches.
Section 5 consists of the analysis of our approach and Section 6 outlines the conclusions.

2 Related Work

2.1 Vision Transformer

Images have a continuous grid-like structure while the transformers require sequential series
data as input, making them incompatible initially. However, [9] fixed this issue and intro-
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duced Vision Transformers to the world. They split images into 16×16 square patches and
flatten them into a vector to form series-like input data. Vision Transformers processes each
patch using a fully connected layer to learn its embedding. A learnable or a fixed (sinu-
soidal) positional embedding is added to this feature embedding at the input level to provide
spatial information. Transformers project the embeddings into queries, keys, and values
and compute self-attention between the patches. Each layer of the transformer consists of a
self-attention block, fully-connected layers followed by a normalization layer. The overall
architecture of the Vision Transformer is similar to a BERT encoder [7]. Vision Transformer
also uses a learnable classification token which is concatenated to input patches. This token
is considered to represent the content of the entire image while the patches contain the local
spatial information. At the output layer, a classification token is used to classify the input.

2.2 Regularization

When the size of training data is not large enough for a network, it tends to overfit and
generalize poorly on unseen data. Several regularization techniques like dropout [23], label
smoothing [24], and various data augmentations have been proposed in the past to alleviate
this problem. Most of these techniques prevent high confidence predictions on samples.
Label smoothing divides a pre-defined probability evenly among all the classes to form a
smooth probability vector instead of a one-hot vector for training the network [24]. Cutout
is another regularization technique inspired by dropout [8]. It randomly removes a portion
of the image and makes the network focus on other parts of the image. This ensures that the
overall image is considered while making a prediction instead of just a small portion of it.

Some data augmentation techniques combine multiple inputs to create a new input for
training. Mixup is a technique that combines two random samples using xmixup = λxa+(1−
λ )xb where xa and xb are two input images and λ ∈ [0,1] is their mixing ratio [32]. The
network is trained to linearly interpolate the predictions according to the input. Similarly,
Cutmix uses a binary mask M on an image to stitch portions of two images together using
xcutmix = M · xa + (1−M) · xb [31]. This results in aesthetically better images and higher
performance as well.

2.3 Semi-supervised Learning

Semi-supervised learning techniques aim to utilize unlabeled data along with the labeled data
for better generalization. A popular semi-supervised learning technique, Pseudo-label, uti-
lizes the network prediction as the ground truth if the confidence is above a certain threshold
[19]. Other techniques use a constraint on unlabeled data during training in such a way that
it does not require its labels. Π-model proposed that a network should produce consistent
outputs despite small changes in the network or the input [18]. This was achieved by reduc-
ing the mean-squared error between the outputs obtained by passing either an input twice
through a network with stochasticity like dropout or by augmenting an image to create its
different versions. MeanTeacher showcased that a teacher network trained with exponential
moving weights average provides better targets for unlabeled data [26]. Mixup along with
consistency regularization was used in MixMatch [2]. Consistency regularization between a
weak and a strong augmentation was proposed in [30].
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Figure 1: Overview of the PatchSwap technique. Images are divided into patches and the
patches between two images are swapped (without changing their relative positions) to create
a PatchSwap image.

3 Proposed Approach - PatchSwap

3.1 Regularization

PatchSwap is a simple regularization technique tailor-made for Vision Transformers. It com-
bines two input images and swaps patches between them to produce a PatchSwap image. The
PatchSwap image is then used to train a Vision Transformer to predict the mixing ratio as
well as the categories of the original images.

Let xa,xb ∈ [0,1]C×H×W be two input images, where C, H, W are the number of channels,
the height and the width of the images, respectively. Let ya and yb be their respective labels.
Given a patch size P, we divide the images into patches of equal size Ia and Ib, where Ia =
[x1

a,x
2
a, . . . ,x

N
a ], Ib = [x1

b,x
2
b, . . . ,x

N
b ], and xi ∈ [0,1]C×P×P is the i-th patch of image x. The

number of patches is N = H
P × W

P , where P is a factor of H and W to ensure that N is an
integer.

PatchSwap generates a new image xps using the patches Ia and Ib and a mixing ratio λ .
We sample the mixing ratio λ from a Beta distribution λ ∼Beta(α,α), where α is a constant
that defines the Beta distribution. λ is converted to a discrete value λ ′ ∈ {0,1, . . . ,N}, where
λ ′ = round(λ .N) to estimate the number of patches to be mixed. We generate a random
binary mask M = [M1,M2, . . . ,MN ] ∈ {0,1}N where Mi = 0 indicates the i-th patch is not
selected and Mi = 1 indicates the patch is selected in the mix and λ ′ = sum(M). We mix the
patches from the two images to generate a PatchSwap image xps,

xps(xa;xb;λ ) = Ia ·M+ Ib · (1−M), (1)

where ‘·’ denotes the element-wise multiplication between a patch xi and the corresponding
mask element Mi. The ‘+’ is overridden to denote a mixing operation combining the two
images. Figure 1 displays a Patchswap between two images with a mixing ratio λ = 0.4 and
N = 9.

The PatchSwap image xps has image components from xa and xb. We use a cross-entropy
loss to train a Vision Transformer to predict both the labels ya and yb. The loss term is given
as,

Lps(xa;ya;xb;yb;λ ) = λLce( f (xps;θt),ya)+(1−λ )Lce( f (xps;θt),yb), (2)
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Figure 2: Overview of the Unsupervised PatchSwap regularization for semi-supervised
learning. Two images are combined to create two distinct versions of PatchSwap images
with same mixing coefficients. Vision Transformer is trained to produce consistent output
for both the inputs.

where Lce represents the standard cross-entropy loss, f (x;θt) is the output prediction for
image x for the Vision Transformer with parameters θt .

3.2 Unsupervised PatchSwap Applied to Semi-supervised Learning

PatchSwap is a simple regularization technique for labeled data. However, it can also be
used for unlabeled data, extending it to semi-supervised learning applications. Popular semi-
supervised learning methods are based on consistency regularization [2, 18, 26]. Consistency
regularization states that two distinct versions of the same input should give consistent re-
sults. Two distinct versions can be generated by either variations in the network, like Dropout
or by modifying the input in two different ways. The network is trained to output the same
predictions for the two distinct inputs. Standard loss functions like mean-squared error,
Kullback-Leibler-divergence, etc., are used to guide the training.

Unsupervised PatchSwap is inspired by the above principle. Given two unlabeled images
x1 and x2, we generate two patch swap masks M1 and M2 using the same mixing ratio λ ∼
Beta(α,α). We ensure M1 ̸= M2. Using x1, x2 and M1, we generate the PatchSwap image
xps1 . Similarly, with x1, x2 and M2, we generate the 2nd PatchSwap image xps2 . Since M1
and M2 are generated using the same mixing ratio λ , the ratio of the number of patches from
x1 and x2 is identical in xps1 and xps2 , even though the same patches are not swapped since
M1 ̸= M2. This ensures xps1 and xps2 are different. This is illustrated in Figure 2 where
two different images are generated with a mixing ratio λ = 0.33. We want to train a Vision
Transformer f (.;θt) that generates the same output for xps1 and xps2 given that their swapping
ratios are identical. We define an unsupervised loss to enforce this consistency regularization
using,

Lcr(x1;x2;λ ) = || f (xps1 ;θt)− f (xps2 ;θt)||2. (3)

In the semi-supervised context, we have a labeled pool of data Dl and an unlabeled pool
of data Du. We apply PatchSwap regularization loss on the labeled data Dl and unsupervised
PatchSwap on the unlabeled data Du. The final equation for the semi-supervised training
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Dataset CIFAR-10 FashionMNIST SVHN

Patch Size 4 8 16 4 8 16 4 8 16

Cross Entropy 83.3 78.3 69.8 92.1 92.8 91.2 96.4 94.7 92.7
Label smoothing [24] 83.0 79.0 69.6 92.0 92.9 91.5 96.5 94.8 92.8
Cutout [8] 84.0 79.2 70.1 94.2 93.5 91.4 96.8 96.2 94.5
Mixup [32] 87.4 82.3 74.3 93.0 93.4 92.2 97.0 95.7 94.2
Cutmix [31] 88.0 82.7 73.8 94.0 93.8 92.5 96.9 96.2 94.8
PatchSwap 88.3 84.7 74.9 94.4 93.9 92.6 97.2 96.8 94.8

Table 1: Comparison of Top-1 classification accuracies on CIFAR-10, FashionMNIST and
SVHN datasets using different patch sizes. Bold numbers represent the highest accuracy.

loss is,
E

(xa,ya),(xb,yb)∼Dl
Lps(xa;ya;xb;yb,λ ) + γ E

x1,x2∼Du
Lcr(x1;x2;λ ), (4)

where γ is a hyper-parameter that balances the two loss components.

4 Experiments

4.1 Regularization

4.1.1 Datasets

To assess the performance of PatchSwap, we test it on various datasets: CIFAR-10, CIFAR-
100, SVHN [21], FashionMNIST [29] and Tiny-ImageNet as these datasets represent differ-
ent types of images. Training Vision Transformers requires a huge amount of data and robust
regularization [9]. However, the chosen datasets are tiny and we apply standard augmenta-
tion techniques during training. For CIFAR-10 and CIFAR-100, we use a random-crop with
zero padding of 4 and a horizontal flip with a probability of 0.5. Tiny-ImageNet is a subset of
Imagenet with 200 classes and image size of 64×64 pixels. We use the same augmentations
as that of CIFAR datasets for it. We also test Tiny-Imagenet images with RandAugment aug-
mentation (strong augmentation) [5]. FashionMNIST consists of grayscale images which we
resize to 32× 32 pixels. We use a random-crop with zero padding of 2 and a random hori-
zontal flip as the augmentations. For SVHN, we resize the images to 32×32 pixels and use a
random-crop with zero padding of 2. We also evaluate the proposed method under different
augmentations and present those results in the supplementary material.

4.1.2 Training Details

For our experiments, we use ViT-Lite from [11] which is a scaled-down version of the orig-
inal Vision Transformer. Specifically, we use 6 encoder blocks with 256 hidden dimension
size and 0.1 dropout. The forward expansion layer is set to 512 and the number of attention
heads is reduced to 4. This results in about 3.7 million parameters as compared to 86 million
in the original Vision Transformer. We train the Vision Transformer from scratch. Due to
the absence of results for baseline approaches, we use the official code from their respec-
tive repositories to report the results. We use 8×8 cutout size for CIFAR-100, 16×16 for
CIFAR-10 and FashionMNIST, 20×20 for SVHN and 32×32 for TinyImagenet. Cutmix is
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Patch Size 4 8 16

Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Cross Entropy 57.9 81.5 50.6 76.2 39.3 65.0
Label smoothing [24] 58.3 77.0 51.5 71.7 39.8 62.3
Cutout [8] 57.0 81.1 50.2 76.1 39.1 64.7
Mixup [32] 63.5 85.0 56.8 80.0 45.3 70.6
Cutmix [31] 63.7 85.2 57.0 80.4 44.2 69.5
PatchSwap 64.9 86.4 58.5 82.5 45.7 71.6

Table 2: Comparison of Top-1 and Top-5 classification accuracies on CIFAR-100 dataset
using different patch sizes for a Vision Transformer. Bold numbers represent the highest
accuracy.

Augmentation Standard RandAugment [5]

Patch Size 8 16 8 16

Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Cross Entropy 41.9 65.2 34.4 57.7 46.2 70.4 39.1 63.4
Label smoothing [24] 42.8 63.0 34.6 56.5 47.0 69.7 39.3 62.7
Cutout [8] 42.8 66.6 33.8 58.1 47.5 71.5 40.2 65.1
Mixup [32] 46.6 69.0 38.5 62.4 49.9 73.5 43.2 67.5
Cutmix [31] 48.4 71.6 39.5 63.5 48.4 74.9 44.0 68.0
PatchSwap 49.9 73.4 41.8 66.3 52.8 77.0 45.6 70.8

Table 3: Comparison of Top-1 and Top-5 classification accuracies on TinyImagenet dataset
with standard (Random crop with padding and Random horizontal flip) and RandAugment
agumentations using different patch sizes for a Vision Transformer. Bold numbers represent
the highest accuracy.

applied with 0.5 probability. For label smoothing, ε is always set to 0.1 unless specified. We
set α = 1.0 for all the experiments.

ViT-Lite uses a smaller patch size than the original Vision Transformer. We performed
our experiments with 4, 8, and 16 patch sizes, and the best performance was observed with
a patch size of 4. We report the results for 4, 8, and 16 patch sizes, except for Tiny-Imagenet
where we use only 8 and 16 due to computation overhead. A smaller patch size increases the
number of patches and in turn, increases the data available to the network for training but it
also increases the computation quadratically. All experiments including the baselines follow
the same training procedure. We train the network for 300 epochs with a batch size of 128
and 0.03 weight decay. We use a learning rate of 5×10−4 which is warmed up for the first
10 epochs and then decayed per epoch using a cosine schedule. The code for PatchSwap is
available at: https://github.com/s-chh/PatchSwap

4.1.3 Results

We compare our approach with state-of-the-art regularization techniques - label smoothing,
Cutout, Mixup, and Cutmix. The results for CIFAR-10, SVHN and FashionMNIST are
in Table 1, for CIFAR-100 in Table 2, and for Tiny-Imagenet in Table 3. Our approach
outperforms all the baselines for all patch sizes. PatchSwap gains approximately 1.5% and
2.5% over Cutmix and Mixup respectively, and about 9% over the standard cross-entropy
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Dataset CIFAR-10 SVHN

Patch Size 4 8 16 4 8 16

Cross Entropy 56.0 53.5 45.4 87.9 86.7 76.0
Pseudo Label [19] 58.1 54.0 46.3 91.2 88.9 78.0
MeanTeacher [26] 62.6 56.5 48.2 96.2 95.1 90.1

PatchSwap (Labeled only) 63.2 60.6 51.3 89.7 87.2 81.0
PatchSwap (Full) 67.6 62.9 54.2 96.4 96.7 90.9

Table 4: Classification accuracies on CIFAR-10 and SVHN datasets in a semi-supervised
setting. Bold numbers represent the highest accuracy.

loss. In addition, PatchSwap outperforms RandAugment augmentation for Tiny-Imagenet.
Combining RandAugment with PatchSwap further boosts its performance over the baseline
approaches.

4.2 Semi-supervised Learning
We perform semi-supervised learning experiments on CIFAR-10 and SVHN [21] using 4000
labeled training samples and all the training samples in the unlabeled set. Pseudo-label train-
ing uses a threshold of 0.9 probability [19]. MeanTeacher uses a teacher network with an
exponential moving average of the student network to generate output targets for the unla-
beled data [26]. We used two augmented versions of the inputs - the first one is used for
generating the output targets using the teacher network and the other one is used to train the
student network.

Our approach also utilizes the exponential moving average similar to [26]. However, it
does not require multiple augmented versions of an image. The consistency regularization
is imposed on the two patch versions of the same image. The teacher network is used to
generate targets from the first PatchSwap image and the student network is trained to match
outputs using the second PatchSwap image. The γ is set to 100 based on [26] for all the
experiments. The unlabeled loss is linearly increased over the first 10 epochs. The rest of the
setup for semi-supervised learning experiments is the same as regularization experiments.

The results for these experiments are shown in Table 4. We also showcase the results of
training with just the labeled data - PatchSwap (Labeled only). PatchSwap (Full) combines
PatchSwap and Unsupervised PatchSwap. Our approach outperforms the baselines meth-
ods. The PatchSwap with labeled loss outperforms MeanTeacher on CIFAR-10 only and
unsupervised PatchSwap provides additional gain.

5 Analysis

5.1 Regularization Intensity
The hyperparameter, α controls the regularization intensity of PatchSwap. The mixing co-
efficient generated by the Beta distribution is rounded to the closest multiple of 1

N where N
is the number of patches, as it can take discrete values only. A small value of α in Beta
distribution generates values close to 0 or 1 and due to rounding, the mixing coefficient will
end up being 0 or 1. This will result in PatchSwap reducing down to cross-entropy loss.
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Figure 3: Impact of α on the CIFAR-10 (left) and FashionMNIST (right) datasets. Different
patch sizes used for training the transformers are denoted by different colors.

Figure 4: Comparison of Number of samples vs Test Accuracy for CIFAR-10 and Fashion-
MNIST dataset. Different patch sizes used for training the Vision Transformers are denoted
by different colors.

Similarly, a high value of α will result in mixing ratio of 0.5. Thus, α parameter handles the
balance between cross-entropy and regularization in such a way.

We experiment with different values of α on CIFAR-10 and FashionMNIST datasets.
The results are displayed in Figure 3. As expected, a low value of α results in significantly
poor performance (close to cross-entropy loss). Also, a high value of α leads to decrease in
the performance. α = 1 (as used in all our experiments) results in a uniform distribution and
functions as cross-entropy loss with 1

N probability.

5.2 Number of Samples

In this section, we reduce the available training data to assess the strength of our regular-
ization. We perform these experiments with CIFAR-10 and FashionMNIST datasets and the
results are shown in Figure 4. We set the available number of training samples to 1000, 4000,
10000, 25000, 45000, full set, and report the test accuracy. We compare the results with the
standard cross-entropy loss (shown using dashed lines) for various patch sizes. PatchSwap
with only 10,000 CIFAR-10 labeled training samples achieves performance equivalent to
supervised training with 25,000 samples. Similarly, for FashionMNIST, PatchSwap signifi-
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Figure 5: Class-specific Attention Maps for PatchSwap images. The first column shows the
input images. We generate PatchSwap images for two different patch sizes - 8 (2nd and 3rd

column) and 16 (4th and 5th column). The 2nd row displays the attention map for Orange
and the last row shows for Teddy Bear.

cantly reduces the amount of labeled data required for training.

5.3 Attention Maps

We visualize class-specific attention maps for the PatchSwap images in Figure 5. We can
observe that the network has learned to focus on the correct patches for classification. For
example, for the orange class, the network focuses on the patches in the middle (2nd row)
where most of the orange is in the original and PatchSwap images. Similarly, the network
focuses on the patches belonging to the Teddy Bear image while classifying it.

6 Conclusions

In this paper, we presented the PatchSwap technique for regularizing Vision Transformers.
Our approach swaps image patches between two images to create a regularized input for
training. Also, it can be further extended to Unsupervised PatchSwap for semi-supervised
applications by applying consistency regularization on two PatchSwap images. Through ex-
tensive experiments, we showcase the strength of PatchSwap over existing state-of-the-art
techniques on various datasets.
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