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Abstract

Medical image analysis has benefited from deep learning techniques not only because
of network architecture engineering, but also a large number of high-quality annotations
which is time- and labour-consuming. Motivated by the recent success of Vision Trans-
former(ViT), we propose to explore the power of ViT for medical image semantic seg-
mentation with an advanced Semi-Supervised Learning(SSL) fashion via MixUp-based
interpolation consistency training and adversarial training. Aiming to train Segmenta-
tion ViT model(sViT) with labelled and unlabelled data simultaneously, an adversarial
SSL framework that consists of a sViT and an evaluation model(EM) is proposed in this
paper. During the adversarial training process, the EM is trained to classify the quality
of inference of sViT is from labelled/unlabelled sample, and the sViT is initialized and
trained against EM (i.e. all inference by sViT is high-quality enough to be classified as
if from labelled data). To further boost the performance of sViT, MixUp-based inter-
polation consistency training is introduced and utilized for sViT. The whole adversarial
training is designed separately for sViT and EM in an iterative manner, and the MixUp
is solely for sViT. Experimental results(including replacing sViT to CNN) demonstrate
the proposed method competitive performance against other SSL methods on a public
benchmark data set with a variety of metrics. The code is publicly available on GitHub.1

1 Introduction
Deep-learning-based methods, especially Convolutional Neural Networks (CNN), have dom-
inated in medical image semantic segmentation since 2015 when FCN was proposed [26].
It is the first fully CNN-based network trained end-to-end and pixels-to-pixels. To tackle
the lack of semantic feature information being transferred through multi-CNN layers, a skip
connection hereby is proposed with CNN results in one of the most promising semantic seg-
mentation backbone networks i.e. UNet [11]. Except for the backbone network study such
as UNet, Deeplab[7], and PSPNet[53], many of the studies also intent to explore a variety of
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advanced network blocks such as multi-scale learning[23, 43], attention mechanism[12, 14],
feature normalization[18], residual learning[9], densely connected[15], and atrous/dilated
CNN[49] for the backbone which results in a family of UNet-based segmentation methods
for CT, Ultrasound, and MRI [10, 17, 19, 46].

The most recent study, however, demonstrates that Transformer, a pure self-attention-
based method, outperforms RNN-based methods with different blocks in the natural lan-
guage process [38]. The ViT is then proposed to explore the feature learning ability of
Transformer in the computer vision domain [8]. A family of ViT-based methods for dense
prediction tasks is then presented such as Swin-ViT to use shift window for hierarchical
ViT results in state-of-the-art results in 2021 [24]. Some other ViT segmentation backbone
studies are motivated by Encoder-Decoder style segmentation models such as TransUNet[6],
which presents the ViT improve conventional UNet in the encoder; and Swin-UNet[4], which
directly presents the Swin-ViT blocks applied into U-shape backbone network.

Although the recent study of network architecture engineering with ViT demonstrate
promising performance in the computer vision community, the training strategy is still one
of the essential barriers to deploying advanced techniques in clinical medical image analysis.
In the medical imaging community, medical data normally comes up with a large amount of
raw data with a small proportion of annotations due to the high cost of clinician annotation
with the requirement of high expert level skill, SSL has been gaining momentum in medical
image segmentation. SSL allows the model to be beneficial with labelled and unlabelled data
together but remains challenging with ViT [27, 41, 42].

Following the above concern, we propose to explore a simple and bespoke sViT with
the SSL fashion for medical image segmentation. A MixUp-based Consistency-Aware
Adversarial Vision Transformer, called CAA-ViT, is presented. The contribution of CAA-
ViT is fourfold as follows:

• We propose to use CNN or Swin-ViT network blocks directly with the U-shape Encoder-
Decoder style segmentation network architecture, respectively.

• Two adversarial SSL training stages are proposed, which consist of training a ViT-
based segmentation model(sViT), and a CNN-based evaluation model(EM), respec-
tively.

• To boost the performance of sViT, a MixUp-based interpolation consistency training
is proposed under consistency-aware concern.

• The CAA-ViT is evaluated on a public benchmark data set with a variety of evaluation
measures, and outperforms other semi-supervised methods [32, 36, 39, 40, 41, 42, 50,
52] under the same setting and feature information distribution.

2 Related Work

2.1 Segmentation Vision Transformer
Image semantic segmentation can be considered a dense prediction task to classify each pixel
of an image whether belonging to a region of interest or background. It is one of the most
challenging computer vision tasks and has been dominated by CNN since 2015 before the
emergence of ViT [11, 19, 26]. CNN-based methods, however, are limited to its finite recep-
tive field [7, 38, 49]. Motivated by the recent success of self-attention in natural language
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processing [38], many image processing tasks are also explored as sequence-to-sequence
problems and the Vision Transformer(ViT) firstly demonstrates the promising performance
of self-attention in image recognition [8]. The input image is split as a series of image
patches with location information, and hereby the global dependencies can be modeled with
pure multi-head self-attention. A variety of ViT-based convolution-free backbone network
for dense prediction are widely proposed such as shift-window ViT(Swin-ViT)[24], and sam-
ple efficient ViT(DeiT)[37] for object detection [5, 22, 34], image segmentation [35, 54],
video recognition [25]. Except for semantic segmentation with ViT[35, 47], most of the
studies are motivated by the combined strength of UNet and ViT in medical image segmen-
tation. The first ViT-based medical image segmentation model is TransUnet[6], that ViT
encoders tokenized image patches from CNN, and decoders upsample the encoded features.
SwinUNet[4] further replace the decoder with Swin-Transformer[24] blocks as a pure ViT-
based encoder-decoder segmentation network. The most latest work [48] demonstrates to
the strength of CNN and ViT can be simultaneously achieved in intra-slice and inter-slice of
CT images. For a fair comparison of CNN and ViT in this SSL study, we propose to use a
simple U-shape Encoder-Decoder segmentation backbone network with two network blocks
i.e. pure CNN- or ViT-based block[4, 11].

2.2 Semi-Supervised Segmentation
The goal of Semi-Supervised Segmentation is to utilize the finite number of labelled images
and high proportion of raw images to train the segmentation model. Consistency regular-
ization of SSL has been widely studied which enforces the consistency of inference with var-
ious perturbations[13, 36, 39, 50]. A part of perturbation studies are applied to input images
augmenting the images randomly and setting the consistency constraint among inferences
of augmented images[13, 20]. The perturbation can also be applied to feature information.
For example, the feature perturbation scheme is to develop multiple decoders and the differ-
ence of inferences of multi-decoder is trained to be similar to cross consistency training[30].
The most common SSL of consistency-aware with perturbation scheme is Student-Teacher
style framework, which consists of a student model, and a teacher model [21, 36, 42]. The
student is initialized with labelled data with perturbations, and the parameters of the teacher
are updated from the student with averaging model weight. The teacher, hereby, is more
robust than student, and can guide the learning of students with pseudo labels under the
consistency-aware concern [50]. Except for the consistency regularization that aims to min-
imize the differences of images with perturbations, adversarial learning[16, 28] normally
utilized an additional discriminator model to extract statistical features aiming to distinguish
ground truth segmentation and inferences of segmentation model. In an adversarial learning
process, the segmentation model and the discriminator model are trained against each other
separately and iteratively. The discriminator aims to distinguish the high-quality segmen-
tation inferences as the pseudo label, and the segmentation model aims to infer confidently
from raw images against discriminator [16, 29, 52]. Motivated by the recent success of ViT,
only a few studies report to train ViT in the SSL fashion for medical image segmentation
starting from 2021. [27] proposed to combine the strength of ViT and CNN via co-training
allowing ViT and CNN to complement and benefit each other with pseudo labels. [42] pro-
posed to explore the ViT with a Student-Teacher style SSL, and an uncertainty-aware scheme
is introduced when the teacher guides the student. In this paper, we further explore the ViT in
SSL with an additional discriminator for adversarial training and a MixUp-based approach
for interpolation consistency training to boost the performance of sViT.
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Figure 1: MixUp-based Interpolation Consistency & Adversarial Vision Transformer for
Semi-Supervised Medical Image Semantic Segmentation. The training of proposed CAA-
ViT consists of three stages including interpolation consistency training for sViT, two adver-
sarial training stages for sViT and EM, respectively. Two supervision loss, and two semi-
supervision loss are indicated accordingly.

3 Approaches

In a general medical image segmentation with the SSL fashion study, L, U and T normally
denote labelled training data set, unlabelled training data set, and a testing data set. We
denote a batch of labelled data as (Xl,Ygt) ∈ L, (Xt,Ygt) ∈ T for labelled training set and
labelled testing set with its corresponding ground truth, and a batch of only raw data as
(Xu)∈ U in the unlabelled training set, where X ∈Rh×w representing a 2D gray-scale image.
Yp is the dense map predicted by a segmentation model f (θ) : X 7→ Yp with the θ as the
parameters of the model f . Yp can be considered as a batch of pseudo label for unlabelled
data (Xu,Yp) ∈ U to retrain models. Final evaluation results are calculated based on the
differences between Yp and Ygt of T. The training objective of CAA-ViT is to minimize
the supervision loss Losssup and the semi-supervision loss Losssemi of sViT, and supervision
loss Losssup of EM. The loss Losssup and Losssemi differs from each other by using labelled
or unlabelled data Xl or Xu. The framework of CAA-ViT including adversarial training
stage and MixUp-based interpolation consistency training stage with corresponding Loss are
briefly illustrated in Figure 1. The CAA-ViT is mainly motivated by adversarial training[52],
and consistency training[36, 39, 44, 45] to explore the power of vision transformer. Three
different training stages including one MixUp-based interpolation consistency training stage
for sViT, and two adversarial training stages separately for sViT and EM to against each
other in an iterative manner are detailed discussed Section 3.1, 3.2, and 3.3.
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3.1 Adversarial Training
In the adversarial training stage, two models are introduced i.e. a ViT-based segmenta-
tion model(sViT) fViT (θ) : X 7→ Yp, and a CNN-based evaluation model(EM) fCNN(θ) :
fViT (X;θ) 7→ Yquality to evaluate the quality of inference. The ViT-based model takes the
input images X and infers corresponding segmentation feature maps Yp, while incorporating
suggestive loss from the EM, also known as the discriminator [16, 29, 52]. The EM takes
the inference of sViT Yp, and the corresponding input images X and infers a quality score
Yquality. In the CAA-ViT, the discriminator is designed to classify the quality of Yp with
Yquality ∈ (0,1), which is considered as a binary classification task, where 1: high-quality
inference, images with annotations, 0: low-quality inference, images without annotations.
The architecture of EM is with VGG16 [33].

In either of the two adversarial training stages of sViT and EM as shown in Figure 1, one
model is trained and the other model is evaluated. The goal of the EM is to distinguish the
inference of sViT from using annotated input or unannotated input[52]. The sViT, however,
is encouraged to make predictions from unannotated input with the same quality as from
annotated input. In the training process, the sViT is trained by taking judgement from EM
to improve the quality of inference achieving the same quality regardless of unannotated,
while the EM is trained to discern the difference between the results from annotated input
and the results from unannotated input since indices of input with labels are known. By
doing so, both two models, hereby, achieve good segmentation and discriminating ability
after training. The details of adversarial training objectives(loss of each model) is discussed
in Section 3.3

3.2 MixUp-Based Interpolation Consistency Training
In the consistency training stage of sViT, we introduce a MixUp-based interpolation con-
sistency training approach. Motivated by consistency regularization, which is to make the
model robust against various perturbations on the unlabelled data [2, 29, 31], pixel-wise per-
turbation is introduced for sViT consistency training. Following the main idea of [39] to
regularizes SSL by encouraging consistent predictions shown in Equation 1,

f (αXu1 +(1−α)Xu2) = α f (Xu1)+(1−α) f (Xu2) (1)

where Xu1,Xu2 are two randomly selected raw images as the input of model f , because two
samples are likely to help find the decision boundary between the two classes with numerous
and balanced classes [39]. α is a hyperparameter. Given MixUp operation [51] which is
illustrated in Equation 2,

Mixλ (a,b) = λ ×a+(1−λ )×b (2)

and pixel-wise interpolation, the sViT fViT is enforced to provide consistent predictions
at interpolations of unlabelled images. The objective of consistency training stage aims
to ensure reliable and consistency segmentation of image points interpolated from existing
points, hereby, can be summarized as Equation 3

fViT (Mixλ (Xu1,Xu2);θ)≈ Mixλ ( fViT (Xu1;θ), fViT (Xu2;θ)) (3)

where the MixUp-based consistency is maintained between the outputs of the interpo-
lated inputs fViT (Mixλ (Xu1,Xu2);θ), and the interpolated outputs of the original inputs
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Mixλ ( fViT (Xu1;θ), fViT (Xu2;θ)). θ is the exponential moving average of θ [36]. The details
of consistency training objectives is discussed in Section 3.3

3.3 Objective

The training objective is to minimize the sum of the supervision loss Lsup and the semi-
supervision Lsemi of three proposed training stages as shown in Equation 4

L= Lsup1 +Lsup2 +λ (Lsemi1 +Lsemi2) (4)

where Lsup or Lsemi depends on whether the data is annotated. λ is with ramp-up func-
tion [21], as λ = e−5×(1−titeration/tmaxiteration)

2
, where t is the iteration. λ is updated every 150

iterations, which is to make the training move the focus from Lsup to initialize mode with
annotations to Lsemi to learn from features of raw images. The Lsup1 is to train the sViT with
labelled data (Xl,Ygt) ∈ L in one of the adversarial training stage, illustrated in Equation 5

Lsup1 = CE(Ygt, fViT (Xl ;θ))+Dice(Ygt, fViT (Xl ;θ)) (5)

where CE and Dice demonstrates the CrossEntropy-based and DiceCoefficient-based differ-
ence measures. The Lsup2 is to train the EM with labelled data (Xl,Ygt) ∈ L, unlabelled data
(Xu) ∈ U, and the inference of sViT in one of the adversarial training stage, illustrated in
Equation 6

Lsup2 = BCE( fCNN( fViT (Xl/Xu;θViT );θCNN),1/0)) (6)

here, Binary Cross-Entropy(BCE) is selected considering the EM is to classify the quality of
inference of sViT. The score 1 indicates the inference is with high quality or from an anno-
tated image, and score 0 indicates the inference is with low quality or from an unannotated
image. The Lsemi1 is to train the sViT with unlabelled data (Xu) ∈ U in the consistency
training stage, illustrated in Equation 7

Lsemi1 = CE( fViT (Mixλ (Xu1,Xu2);θ), fViT (Xl ;θ),Mixλ ( fViT (Xu1;θ), fViT (Xu2;θ))) (7)

where CE is solely utilized on unlabelled data, such as Xu1, and Xu2. In light of the inspiration
of using MixUp in supervised setting to gain large decision boundary margin [51], here
in unsupervised setting MixUp-based interpolation is applied to sample Xu1, and Xu2, and
corresponding pseudo labels Yp = fViT (Xu;θ). Thus the parameter θ is moving to make
inference of sViT closer to the pseudo label. Lsemi1 is to train the sViT with the quality score
of EM in one of the consistency training stage, illustrated in Equation 8

Lsemi2 =−CE( fCNN( fViT (Xu;θViT ),Xu;θCNN),0) (8)

By applying CE for evaluation score of inference fViT (Xu) from EM fCNN , the sViT is en-
forced to predict reasonably good segmentation maps supervised by EM.
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4 Experiments

Data sets: Our experiments validate the CAA-ViT and baseline methods on a public avail-
able MRI cardiac segmentation set, also known as ACDC, from MICCAI Challenge 2017 [1].
The data is collected from 100 patients with multi-clasee annotation including right ventri-
cle, the endocardial and epicardial walls of the left ventricle covering different distributions
of feature information, across five evenly distributed subgroups: normal, myocardial infarc-
tion, dilated cardiomyopathy, hypertrophic cardiomyopathy, and abnormal right ventricle.
All images are resized to 224×224 following the requirement of input of ViT segmentation
backbone network[4]. 20% of images are selected as testing set, and the rest of data set is for
training(including validation). There is no overlap between test, labelled train, unlabelled
train, and validation set.
Implementation Details: Our code has been developed under Ubuntu 20.04 in Python 3.8.8
using Pytorch 1.10 and CUDA 11.3 using one Nvidia GeForce RTX 3090 GPU, and Intel(R)
Intel Core i9-10900K. The runtimes averaged around 3.5 hours, including the data transfer,
training, and inference. Data set is processed for 2D image segmentation purpose. CAA-ViT
is trained for 30,000 iterations, batch size is set to 24, optimizer is SGD[3], and learning rate
is set to 0.01, momentum is 0.9, and weight decay is 0.0001. The network is evaluated on
validation set every 200 iterations, and the weight of network is saved only when the perfor-
mance on validation outperforms the previous best performance. The above setting is also
applied to all other baseline methods directly without any modification.
Backbone: The CAA-ViT consists of two models as shown in Figure 1. One is Swin-ViT-
based U-shape encoder-decoder style segmentation model with skip connection[11, 24], and
the other one is CNN-based discriminator following [33]. For a fair comparison, ViT-based
U-shaped model selected in this study is aiming to make the computational cost and training
efficiency similar with CNN-based UNet. The additional results of SSL methods with UNet
results in CAA-CNN and other baseline methods are reported in Appendix.
Baseline Methods: All methods including CAA-ViT and other baseline methods are trained
with the same hyper-parameter setting and the same distribution of features. The random
selection of test set, labelled train set and unlabelled train set was only conducted once and
then tested with all baseline methods together as well as CAA-ViT. The baseline methods
reported includes: MT [36], DAN [52], ICT [39], ADVENT [40], UAMT [50], DCN [32]
with ViT[4] and CNN[11] as the segmentation backbone network.
Evaluation Metrics: The direct comparison experiments between CAA-ViT and other base-
line methods are conducted with a comprehensive f evaluation metrics including similarity
measures(the higher the better): Dice, IOU, Accuracy, Precision, Sensitivity, Specificity,
and difference measures(the lower the better): Hausdorff Distance (HD) 95%, Average Sur-
face Distance (ASD). The mean value of these metrics is reported because the data set is
a multi-class segmentation data set. The full evaluation measures are reported when com-
paring CAA-ViT against other baseline methods. IOU as the most common metric is also
selected to report the performance of all baseline methods and CAA-ViT under different
assumptions of the ratio of labelled/total data including 10%, 20%, 30%, 60%, 70%, 80%,
90%, 100%(fully supervised), and used to report the evaluation of each inference on the test
set with a distribution chart.
Quantitative Results: Table 1 reports the direct comparison of CAA-ViT against other SSL
methods including similarity measures and difference measures when the ratio of assumed
labelled/total data is 10%. Table 2 reports the CAA-ViT and other SSL methods perfor-
mance under different assumptions of ratio of labelled/total data. The best result on table 1,
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2 is in Bold. A line chart in logarithmic scale is briefly sketched in Figure 3 (a), where
X-axis is the ratio of labelled/total data, and Y-axis is the IOU performance, illustrating the
valuable performance of CAA-ViT against other baseline methods especially in low ratio
of labelled/total data. IOU is selected to evaluate each image of test set, and a histogram
indicating the cumulative distribution of IOU performance of inference is briefly sketched in
Figure 3 (b), where the X-axis is the IOU threshold and the Y-axis is the number of predicted
images on test set, demonstrating CAA-ViT more likely to predict images with high IOU
against other methods. More details of the qualitative results are reported in Appendix.
Qualitative Results: Figure 2 illustrates eight randomly selected sample raw images, corre-
sponding inference against the publish ground truth of all baseline methods including CAA-
ViT, where Yellow, Red, Green and Black denote True Positive(TP), False Positive(FP),
False Negative(FN) and True Negative(TN) region on test set at pixel level.

Figure 2: The Qualitative Inference Results of CAA-ViT and Other Methods Against Ground
Truth Under 10% of Label/Total Data for Training
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Table 1: Direct Comparison of Semi-supervised Frameworks on MRI Cardiac Test Set
Framework mDice↑ mIOU↑ Acc↑ Pre↑ Sen↑ Spe↑ HD↓ ASD↓

MT[36]+ViT 0.8384 0.7359 0.9939 0.8362 0.8415 0.9716 23.7689 2.2801
DAN[52]+ViT 0.8232 0.7165 0.9932 0.8243 0.8222 0.9686 23.5824 2.8411
ICT[39] +ViT 0.8663 0.7748 0.9948 0.8607 0.8722 0.9775 22.5653 2.2404

ADVENT[40]+ViT 0.8654 0.7733 0.9949 0.8689 0.8625 0.9743 20.4493 1.9022
UAMT[50] +ViT[42] 0.8542 0.7575 0.9945 0.8523 0.8575 0.9752 23.6615 2.2159

DCN[32] +ViT 0.8728 0.7844 0.9950 0.8770 0.8690 0.9738 22.3759 1.9762
CAA-ViT(ours) 0.8824 0.7984 0.9954 0.8887 0.8765 0.9748 18.9200 1.7587

Table 2: The Mean IOU Results on Test Set Under Different Assumptions of Ratio of La-
bel/Total Data for Training

labelled/Total 10% 20% 30% 60% 70% 80% 90% 100%
MT[36]+ ViT 0.7359 0.8096 0.8338 0.8567 0.8569 0.8593 0.8596 0.8655

DAN[52]+ ViT 0.7165 0.7927 0.8148 0.8451 0.8467 0.8432 0.8391 0.8544
ICT[39] + ViT 0.7748 0.8147 0.8318 0.8556 0.8583 0.8545 0.8637 0.8658

ADVENT[40]+ ViT 0.7733 0.8099 0.8315 0.8581 0.8610 0.8561 0.8577 0.8682
UAMT[50]+ ViT[42] 0.7575 0.8085 0.8291 0.8541 0.8538 0.8571 0.8614 0.8672

DCN[32] + ViT 0.7844 0.8248 0.8302 0.8604 0.8565 0.8582 0.8594 0.8665
CAA-ViT(ours) 0.7984 0.8192 0.8485 0.8681 0.8670 0.8674 0.8748 0.8775

Figure 3: The Performance of Proposed Model with Baseline Methods for Medical Image
Segmentation

5 Conclusion

In this paper, the exploration of a segmentation vision transformer in an advanced semi-
supervision fashion, CAA-ViT, is introduced. A novel adversarial training and a MixUp-
based interpolation consistency training are designed simultaneously that allow vision trans-
former to benefit from a large amount of medical data with limited annotations. In terms of
performance, CAA-ViT outperforms other methods with a variety of measures under differ-
ent situations of ratio labelled/total data with promising results.
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