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Abstract

Convolutional neural networks (CNNs) have led to significant improvements in the
semantic segmentation of images. When source and target datasets come from different
modalities, CNN performance suffers due to domain shift. In such cases data annotation
in the target domain becomes necessary to maintain model performance. To circumvent
the re-annotation process, unsupervised domain adaptation (UDA) is proposed to adapt
a model to new modalities using solely unlabeled target data. Common UDA algorithms
require access to source domain data during adaptation, which may not be feasible in
medical imaging due to data sharing restrictions. In this work, we develop an algorithm
for UDA where the source domain data is inaccessible during target adaptation. Our
approach is based on encoding the source domain information into an internal distribution
that is used to guide adaptation in the absence of source samples. We demonstrate the
effectiveness of our algorithm by comparing it to state-of-the-art medical image semantic
segmentation approaches on two medical image semantic segmentation datasets.

1 Introduction

Employing CNNs in semantic segmentation tasks has been proven to be extremely help-
ful in various applications, including object tracking [4, 67, 75], self-driving cars [20, 29],
and medical image analysis [1, 27, 28, 55]. This success, however, is conditioned on the
availability of huge manually annotated datasets to supervise the training of state-of-the-art
(SOTA) network structures [50, 60]. This condition is not always realized in practice, espe-
cially in fields such as medical image segmentation, where annotating data requires the input
of trained experts and privacy regulations make sharing data for crowd-sourcing extremely
restricted, and at times impossible. A characteristic of data in the area of medical image
segmentation is the existence of domain shift between different imaging modalities, which
stems from using imaging devices based on totally different electromagnetic principles, e.g.,
CT vs MRI. When domain gap exists between the distributions of the training (source) and
the testing (target) data, the performance of CNNs can degrade significantly. This makes
continual data annotation necessary for maintaining model performance.
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Domain shift is a major area of concern, as data annotation is a challenging procedure
even for the simplest semantic segmentation tasks [38]. Annotating medical images is also
expensive, as annotation can be performed only by physicians, who undergo years of train-
ing to obtain domain expertise. Unsupervised domain adaptation (UDA) is a learning setting
aimed at reducing domain gap without data annotation in the target domain. The goal is to
adapt a source-trained model for improved generalization in the target domain using solely
unannotated data [18, 52, 64, 70]. The core idea in UDA is to achieve knowledge trans-
fer from the source domain to the target domain by aligning the latent features of the two
domains in an embedding space. This idea has been implemented either using adversarial
learning [5, 16, 21, 63], directly minimizing the distance of distributions of the latent features
with respect to a probability metric [7, 35, 48, 58], or a combination of the two [12, 54].

While existing UDA algorithms have been successful in reducing cross-domain gap, the
vast majority of these approaches require sharing data between the source and target do-
mains to enforce distribution alignment. This requirement limits the applicability of most
existing works when sharing data may not be possible, e.g., sharing data is heavily regulated
in healthcare domains due to the confidentiality of patient data and from security concerns.
Until recently, there has been little exploration of UDA when access to the source domain is
limited [30, 45, 49, 53, 66]. These recent works benefit from generative adversarial learn-
ing to maintain source distribution information. However, addressing UDA for classification
tasks limits the applicability of such methods to the problem of organ semantic segmenta-
tion [73]. A similar problem is encountered with UDA for street semantic segmentation [31],
given medical devices produce data distributions requiring additional preparation with large
background areas [74]. Recent medical works propose adaptation without source access via
entropy minimization [2, 3], but these methods are susceptible to degenerate solutions.

Contribution: we develop a UDA algorithm for the semantic segmentation of medical
images when sharing data is infeasible due to confidentiality or security concerns. Our ap-
proach is able to reduce domain gap without having direct access to the source data during
adaptation. We learn the internal distribution for the source domain, and transfer knowl-
edge between the source and target domains by distribution alignment between the learned
internal distribution and the latent distribution of features of the target domain. We vali-
date our algorithm on two medical image segmentation datasets, and observe comparable
performance to SOTA methods based on joint training.

2 Related Work

SOTA semantic segmentation algorithms use deep neural network architectures to exploit
large annotated datasets [34, 36, 39, 43]. These approaches are based on training a CNN
encoder using manually annotated segmentation maps to learn a latent embedding of the
data. An up-sampling decoder combined with a classifier is then used to infer pixel-wise
estimations for the true semantic labels. Performance of such methods is high when large
amounts of annotated data are available for supervised training. However, these methods
are not suitable when the goal is to transfer knowledge between different domains [44, 52].
Model adaptation from a fully annotated source domains to a target domains has been ex-
plored in both semi-supervised and unsupervised settings. Semi-supervised approaches rely
on the presence of a small number of annotated target data samples [42, 68]. For example, a
weakly supervised signal on the target domain can be obtained using bounding boxes. How-
ever, manual data annotation of a small number of images is still a considerable bottleneck
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in the area of medical imaging because only trained professionals can perform this task. For
this reason, UDA algorithms are more appealing for healthcare applications.

UDA approaches have explored two main strategies to reduce the domain gap. A large
number of works rely on generative adversarial networks (GANs) [24, 69]. The core idea is
to use a GAN loss such that data points from both domains can be mapped into a domain-
invariant embedding space [21]. To this end, a cross-domain discriminator network is trained
to classify whether data embeddings correspond to the source or target domain. An encoder
network attempts to fool the discriminator by producing domain agnostic representations for
source and target data points. Following this alternating optimization process, a classifier
trained using source domain encodings produced by the encoder network would also gener-
alize in the target domain [15, 40]. The weakness of GANs is mode collapse, which requires
careful fine-tuning and selection of hyper-parameters in order to be overcome.

Other UDA approaches aim to directly align the distributions of the two domains in a
shared embedding space [35, 47, 57]. A shared encoder network is used to generate latent
features for both domains. A common latent feature space is achieved by minimizing a suit-
able probability distance metric between the source and target embeddings [17, 33, 37, 51].
Selecting proper distance metrics has been the major focus of research for these approaches.
Optimal transport has been found particularly suitable for deep learning based UDA [13].
We utilize the Sliced Wasserstein Distance (SWD) [35, 46] variant of the optimal transport
with similar properties, but which allows for fast gradient based optimization.

The above mentioned sets of approaches have been found helpful in various medical se-
mantic segmentation applications [8, 22, 25, 72]. However, both strategies require direct
access to source domain data for computing the loss functions. To relax this requirement,
UDA has been recently explored in a source-free setting to address scenarios where the
source domain is not directly accessible [30, 53]. Both Kundu et al. [30] and Saltori et
al. [53] target image classification, and benefit from generative adversarial learning to gen-
erate pseudo-data points that are similar to the source domain data in the absence of actual
source samples. While both approaches are suitable for classification problems, extending
them to semantic segmentation of medical images is not trivial. First, training models that
can generate realistic medical images is considerably more challenging due to importance of
fine details. Second, one may argue that if generated images are too similar to real images,
the information confidentiality of patients in the training data may still be compromised. Our
work is based on using a dramatically different approach. We develop a source-free UDA
algorithm that performs the distribution alignment of two domains in an embedding space
by using an intermediate internal distribution to relax the need for source data.

3 Problem Formulation

Consider a source domain DS = (X5, Y5) with annotated data and a target domain D7 = (XT)
with unannotated data that despite having different input spaces X5 and X7, e.g., due to us-
ing different medical imaging techniques, share the same segmentation map space Y, e.g.,
the same tissue/organ classes. Following the standard UDA pipeline, the goal is to learn
a segmentation mapping function for the target domain by transferring knowledge from the
source domain. To this end, we must learn a function fg(-) : {XSUXT} — {Y'} with learnable
parameters 0, e.g., a deep neural network, such that given an input image x*, the function re-
turns a segmentation mask j that best approximates the ground truth segmentation mask y*.
Given the annotated training dataset {(x*,y*)}" , in the source domain, it is straightforward
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Figure 1: Proposed method: We first perform supervised training on source MR images. Using the
source embeddings we characterize an internal distribution via a GMM distribution in the latent space.
We then perform source free adaptation by matching the embedding of the target CT images to the
learnt GMM distribution, and fine tuning of the classifier on GMM samples. Finally, we verify the
improved performance that our model gains from model adaptation.

to train a segmentation model that generalizes well in the source domain through solving an
empirical risk minimization (ERM) problem, i.e., 6 = argming TIN LG, fo(x*))), where
Lis a proper loss function, e.g., the pixel-wise cross-entropy loss, defined as L. (y*,9) =

Z 12 0 Zk LyF i logy;jr. Here, K denotes the number of segmentation classes, and W, H
represent the width and the height the input images, respectively. Each pixel label y;; will
be represented as a one hot vector of size K and J;; is the prediction vector which assigns
a probability weight to each label. Due to the existence of domain gap across the two do-
mains, i.e. discrepancy between the source domain distribution p*(X) and the target domain
distribution p’(X), the source-trained model using ERM may generalize poorly in the target
domain. We want to benefit from the information encoded in the target domain unannotated
dataset {x'}** | to improve the model generalization in the target domain further.

We follow the common strategy of domain alignment in a shared embedding space to
adress UDA. Consider our model f to be a deep convolutional neural network (CNN). Let
f=0¢oyxow, where y(-) : RV*H*C _, RUXV j5 3 CNN encoder, x(-) : RVXV — RWxH*K
is an up-scaling CNN decoder, and ¢ (-) : RV*H*K _ RWXHXK jq 4 classification network
that takes as inputs latent space representations and assigns label-probability values. We
model the shared embedding space as the output space of the sub-network x o y(-). Solving
UDA reduces to ensuring the source and target embedding distributions are aligned in the
embedding space. This translates into minimizing the distributional discrepancy between the
xow(p*(-)) and x o w(p'(-)) distributions. A large group of UDA algorithms [65, 71] select
a probability distribution metric D(-, -), e.g. SWD or KL-divergence, and then use the source
and the target domain data points, XS [¥,...,xy] and X7 = [ ,...,x}], to minimize the
loss term D(x o w(p*(+)),x o w(p'(-))) as a regularizer. However, this will constrain the
user to have access to the source domain data to compute D( o y(p*(-)),x o w(p'(-))) that
couples the two domains. We provide a solution to align the two domains without sharing
the source domain data, that benefits from an intermediate probability distribution.

4 Proposed Algorithm

Our proposed approach is based on using the internal distribution Pz as a surrogate for the
learned distribution of the source domain in the embedding space. Upon training fg using
ERM, the embedding space would become discriminative for the source domain. This means
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that the source distribution in the embedding space will be a multimodal distribution, where
each mode denotes one of the classes. This distribution can be modeled as a Gaussian Mix-
ture Model (GMM). To develop a source-free UDA algorithm, we can draw random samples
from the GMM and instead of relying on the source data, align the target domain distribution
with the internal distribution in the embedding space. In other words, we estimate the term
D(xow(p*(:),xow(p'(-)) with D(Pz(-),x o w(p'(-))) which does not depend on source
samples. We use SWD as the distribution metric for minimizing the domain discrepancy. A
visual concept-level description for our approach is presented in Figure 1.

The intermediate distribution. The function y o y transforms the input distribution
p*(+) to the internal distribution Pz (-) = x o y(p*(-)) based on which the classifier ¢ assigns
labels. This distribution will have K modes. Our idea is to approximate Pz(-) via a GMM
with @ x K components, with @ components for each of the K semantic classes:

Z OCcPL Z ac Z‘.um c

where Q. represents the mixture probabilities, L. represents the mean of the Gaussian ¢, and
Y. is the covariance matrix of the ¢’ component. Under the above representation, each
semantic class k € {1...K} will be represented by @ components: (k—1)o+1...ko.
When the network f is trained on the source domain, we can estimate the GMM param-
eters class-conditionally from the latent features obtained from the source training samples
{@(x(x*))ije.¥i;} Once class specific latent embeddings are computed via access to the
labels Y5, we estimate the corresponding @ components using the EM algorithm.

Sample selection. To improve class separations in the internal distribution Pz, we only
use high-confidence samples in each class for estimating parameters of p.(-). We use a
confidence threshold parameter p, and discard all samples for which the classifier confidence
on its prediction p;; is strictly less than p. This step helps cancel out class outliers. Let
Sp = {(x{},i;)Imax ¢ (x (y(xi;))) > p} be the source data pixels on which the classifier
¢ assigns confidence greater than p. Also, let Sy = {(x,y)|(x,y) € Sp,y = k}. Then,
for each class k we generate empirical estimates for the @ components defined by triplets
(Caok—1)+1> Bao(k—1)+1> Eo(k—1)+1) - - (Ook: flok: Eox) by applying EM to S, 4 data points.

The adaptation loss. Given the estimated internal distribution parameters &, 1,5, we
can perform domain alignment. Adapting the model should lead to the target latent distribu-
tion x(y(p'(X))) matching the distribution Pz in the embedding space. To this end, we can
generate a pseudo-dataset D¥ = (Z” Y?) by drawing samples from the GMM and aligning
x(w(XT)) with Z? to reduce the domain gap. The alignment loss can then be formalized as:

Ladapt = Lee(9(Z27),Y7) +AD(x (w(X")),Z") M

The first term in Eq. | involves fine-tuning the classifier on samples from the pseudo-dataset
(ZP,Y") to ensure that it would continue to generalize well. The second term enforces the
distributional alignment. Since the source samples are not used in Eq. 1, data confidentiality
will also be preserved. The last ingredient for our approach is selection of the distance metric
D(-,+). We used SWD for this purpose. The pseudocode for our approach, called Source Free
semantic Segmentation (SES), is presented in Alg. 1.
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5 Experimental Validation Algorithm 1 SFS (1, p, )

Initial Training:
Input: Source dataset DS = (X°,Y5),

1:

2
. . 3 Training on Source Domain:
Multi-Modality Whole Heart Segmenta- . by = argming ¥; £(fo (x!),¥!)
5
6

5.1 Datasets
tion Dataset (MMWHS) [77]: this dataset Internal Distribution Estimation:
consists of multi-modality whole heart im- Set p = .97, compute Sp 4, and estimate
ages obtained on different imaging devices @, [, and 3 ; class conditionally via EM
at different imaging sites. Segmentation 7: Model Adaptation:
maps are provided for 20 MRI 3D heart 8: Input: Target dataset D7 = (X7)
images and 20 CT 3D heart images which ~ 9:  Pseudo-Dataset Generation:
have domain gap. Following the UDA 10: ¥ = (Z7.Y") = (zf,....2}]. [}, yR])
setup, we use the MRI images as the source where: g ~Pz(2),1 <i<N,
domain and CT images as the target do- H: foritr=1-ITR do T P
main. We perform UDA with respect to 1z Draw batches from D ar.ldD
. . 13: Update the model by solving Eq. (1)
four of the available segmentation classes: |, o 4 for
ascending aorta (AA), left ventricle blood
cavity (LVC), left atrium blood cavity (LAC), myocardium of the left ventricle (MYO).

We will use the same experimental setup and parsed dataset used by Dou et al. [15] for
fair comparison. For the MRI source domain we use augmented samples from 16 MRI 3D
instances. The target domain consists of augmented samples from of 14 3D CT images, and
we report results on 4 CT instances, as proposed by Chen et al. [6]. Each 3D segmentation
map used for assessing test performance is normalized to have zero mean and unit variance.

CHAOS MR — Multi-Atlas Labeling Beyond the Cranial Vault: the second domain
adaptation task consists of data frames from two different dataset. As source domain we,
consider the the 2019 CHAOS MR dataset [26], previously used in the 2019 CHAOS Grad
Challenge. The dataset consists of both MR and CT scans with segmentation maps for the
following abdominal organs: liver, right kidney, left kidney and spleen. Similar to [6] we use
the T2-SPIR MR images as the source domain. Each scan is centered to zero mean and unit
variance, and values more than three standard deviations away from the mean are clipped.
In total, we obtain 20 MR scans, 16 of which we use for training and 4 for validation. The
target domain is represented by the dataset which was presented in the Multi-Atlas Labeling
Beyond the Cranial Vault MICCAI 2015 Challenge [32]. We utilize the 30 CT scans in
the training set which are provided segmentation maps, and use 24 for adaptation and 6 for
evaluating generalization performance. The value range in the CT scans was first clipped to
[—125,275] HU following literature [74]. The images were re-sampled to an axial view size
of 256 x 256. Background was then cropped such that the distance between any labeled pixel
and the image borders is at least 30 pixels, and scans were again resized to 256 x 256. Finally,
each 3D scan was normalized independently to zero mean and unit variance, and values more
than three standard deviation from the mean were clipped. Data augmentation was performed
on both the training MR and training CT instances using: (1) random rotations of up to 20
degrees, (2) negating pixel values, (3) adding random Gaussian noise, (4) random cropping.

Both of the above problems involve 3D scans. However our network encoder architecture
receives 2D images at its input, where each image consists of three channels. To circumvent
this discrepancy, we follow the frame-by-frame processing methodology by Chen et al. [9].
We convert higher dimensional features into 2D images by creating images from groups
of three consecutive scan slices, and using them as labels for the segmentation map of the
middle slice. Implementation details re included in the Appendix.
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5.2 Evaluation Methodology

Following the medical image segmentation literature, we use two main metrics for evalua-
tion: dice coefficient and average symmetric surface distance (ASSD). The Dice coefficient
is a popular choice in medical image analysis works and measures semantic segmentation
quality [6, 9, 74]. It is used for direct evaluation of segmentation accuracy. The ASSD is a
metric which has been used [6, 14, 59] to assess the quality of borders of predicted segmen-
tation maps which are important for diagnosis. A good segmentation will have a large Dice
coefficient and low ASSD value, the desirability of a result being application dependant.
We compare our approach to other state-of-the-art techniques developed for unsupervised
medical image segmentation. We compare against adversarial approaches PnP-AdaNet [16],
SynSeg-Net [23], AdaOutput [62], CycleGAN [76], CyCADA [21], SIFA [6], ARL-GAN [11],
DSFEN [78], SASAN [61], DSAN [19]. These works are recent methods for semantic seg-
mentation that serve as upper bounds for our approach, as we do not process the source
domain data directly. We reiterate the advantage of our method is to preserve the confi-
dentiality of patient data, and we do not claim best performance. We also compare against
GenAdapt [31], a SOTA street semantic segmentation method that is not tuned for the medi-
cal field. Finally, we also evaluate our model against AdaEnt [2] and AdaMI [3], two recent
source-free approaches designed for medical semantic segmentation, and observe our meth-
ods outperforms both these techniques. Our code is available as a supplementary material.

5.3 Quantitative and Qualitative Results

Tables 1 and 2 summarize the segmentation performance for our method along with other
baselines. As mentioned, when compared to other UDA approaches our method has the
additional benefit of not violating data confidentiality on the source and target. This means
most other approaches should serve as upper bounds for our algorithm, as they do not
enforce restrictions for jointly accessing source and target data. We also compare against a
recent street semantic segmentation algorithm [31] to verify whether real world adaptation
approaches are at a disadvantage due to the specificity of medical data. We observe this
approach has indeed lowest performance out of the considered methods. On the MMWHS
dataset we achieve SOTA performance on class AA. We obtain the highest Dice score out
of the considered methods, due to our high average performance on all classes. The ASSD
score is competitive with other approaches, the best such score being observed for GAN
based methods. This shows our domain alignment approach successfully maps each class
in the target embedding to its corresponding vicinity using the internal distribution. For the
abdominal task we observe similar trends. We achieve SOTA performance on class Liver,
and competitive performance on the other classes. These results suggest that our method
offers the possibility of domain adaptation with competitive performance.

In Figure 5, we present the improvement in segmentation on CT scans from both datasets.
In both cases, the supervised models are able to obtain a near perfect visual similarity to the
ground truth segmentation which represent the upper-bound performance. Post-adaptation
quality of the segmentation maps becomes much closer to the the supervised regime from
a visual perspective. We observe fine details on image borders need more improvement
in images 2,5,6,10. This is in line with the observed ASSD performance. Overall, our
approach offers significant gains with respect to the Dice coefficient, which directly measures
the segmentation accuracy. The improvement in surface distance is also consistent, however
best ASSD performance is observed for [61], a method with joint access to source data. Still,
our algorithm has the advantage of also maintaining data confidentiality during adaptation.
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Dice Average Symmetric Surface Distance
Method AA LAC LVC MYO|Average| AA LAC LVC MYO| Average

Source-Only |28.4 27.7 40 87 | 17.2 |20.6 16.2 N/A 48.4 N/A
Supervised* |88.7 89.3 89.0 88.7| 87.2 |2.6 49 22 1.6 3.6
GenAdapt* [31]1| 57 51 36 31 43.8 |N/A N/A N/A N/A N/A
PnP-AdaNet [16]74.0 68.9 61.9 50.8| 639 [12.8 6.3 17.4 14.7 12.8
SynSeg-Net [23]|71.6 69.0 51.6 40.8 | 582 |11.7 7.8 7.0 9.2 8.9
AdaOutput [62] [65.2 76.6 544 433 | 599 |179 55 59 89 9.6
CycleGAN [76] |73.8 75.7 52.3 28.7| 57.6 |11.5 13.6 9.2 88 10.8
CyCADA [21] |72.9 77.0 624 453 | 644 |96 80 9.6 105 9.4
SIFA [6] 81.3 79.5 73.8 61.6| 741 |79 62 55 85 7.0
ARL-GAN [11]|71.3 80.6 69.5 81.6 | 757 |63 59 6.7 6.5 6.4
DSFN [78] |84.7 76.9 79.1 62.4| 75.8 |N/A N/A N/A N/A N/A
SASAN [61] |82.0 76.0 82.0 720| 780 |4.1 83 35 33 4.9
DSAN[19] |79.9 84.7 82.7 66.5| 785 |77 6.7 38 5.6 5.9
AdaEnt* [2] |75.5 71.2 594 56.4| 656 |85 7.1 84 8.6 8.2
AdaMI* [3] |83.1 782 74.5 668 | 757 |56 42 57 69 5.6

‘ SFS* ‘88.0 83.7 81.0 72.5 ‘ 81.3 ‘6.3 72 47 6.1 ‘ 6.1 ‘

Table 1: Segmentation performance comparison for the Cardiac MR — CT adaptation task.
Starred methods perform source-free adaptation. Bolded cells show best performance.

Dice Average Symmetric Surface Distance

Method Liver R.Kidney L.Kidney Spleen|Average|Liver R.Kidney L.Kidney Spleen|Average
Source-Only |73.1  47.3 57.3 55.1 | 582 |29 5.6 7.7 7.4 5.9
Supervised 942  87.2 88.9 89.1 | 89.8 |12 1.2 1.1 1.7 1.3
SynSeg-Net [23]| 85.0  82.1 72.7 81.0 | 80.2 |22 1.3 2.1 2.0 1.9
AdaOutput [62] | 854  79.7 79.7 81.7 | 81.6 | 1.7 1.2 1.8 1.6 1.6
CycleGAN [76]|83.4 793 794 713 | 799 | 1.8 1.3 1.2 1.9 1.6
CyCADA [21] |84.5 78.6 80.3 76.9 | 80.1 | 2.6 1.4 1.3 1.9 1.8
SIFA [6] 88.0 833 809 82,6 | 83.7 |12 1.0 1.5 1.6 1.3

‘ SFS* ‘ 883 737 80.7 81.6 ‘ 81.1 ‘ 2.4 4.1 3.5 2.7 ‘ 32 ‘

Table 2: Segmentation performance comparison for the Abdominal MR — CT task.

5.4 Ablation Studies and Empirical Analysis

We empirically demonstrate why our algorithm works by screening changes in the latent
embedding before and after adaptation. To visualize the embeddings, we use UMAP [41]
to reduce the high-dimensional embeddings to 2D. Figures 2 and 3 showcase the impact
of our algorithm on the latent distribution of the two datasets. In Figure 2(a), we record the
latent embedding of the GMM distribution that is learned on the cardiac MR embeddings.
Figure 2(b) exemplifies the distribution of the target CT samples before adaptation. We see
from Table 1 that the source-trained model is able to achieve some level of pre-adaptation
class separation which is confirmed in Figure 2(b). In Figure 2(c) we observe that this
overlap is reduced after adaptation. We also observe that the latent embedding of the target
CT samples is shifted towards the internal distribution, making the source-trained classifier
generalizable. We repeat the same analysis for the organ segmentation dataset, and observe
a similar outcome. We conclude that our intuition is confirmed, and the algorithm mitigates
domain shift by performing distribution matching in the latent embedding space.

We also investigate the impact of the p parameter on our internal distribution. In Figure
4 we present the UMAP visualization for the learnt GMM embeddings for three different
values of p. We observe that while some classes will be separated for p = 0, using high con-
fidence samples to learn the GMM will yield higher separability in the internal distribution.
We observe our algorithm is robust when p is close to 1, hence our choice of p = .97.
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(a) GMM samples (b) Pre-adaptation (c) Post-adaptation

Figure 2: Indirect distribution matching in the embedding space: (a) GMM samples approximating the
MMWHS MR latent distribution, (b) CT latent embedding prior to adaptation (c) CT latent embedding

post domain alignment. Colors correspond to: , LAC, , MYO.
& : & - | é‘p .v .'
(a) GMM samples (b) Pre-adaptation (c) Post-adaptation

Figure 3: Indirect distribution matching: (a) GMM samples approximating the CHAOS MR latent
distribution, (b) Multi-Atlas CT embedding prior to adaptation (c) Multi-Atlas CT embedding post
adaptation. Colors correspond to: liver, right kidney, ,

L 9 & L Y
- et =

T disve e
(@ p=0 (b) p=0.38 (© p=97

Figure 4: Learnt Gaussian embeddings on the cardiac dataset for different p.

Ignore MYO LAC LvC AA

Ignore||97.3 99.3 99.3|| 1.5 20.3 70.0(| 0.2 80.2 14.8] 0.9 6.2 76.1{| 0.2 43.8 51.7
MYO ([13.2 10.4 89.5((81.6 72.2 72.2|| 0.1 52.7 0.4 | 5.2 44.6 54.1/|0.0 0.0 0.0
LAC |[15.1 45.4 46.3|| 2.5 2.6 79.7||76.1 88.4 88.4||5.9 7.4 87.4|/04 58 77.0
LVC || 0.6 67.7 2.3 ||16.5 33.4 66.3|| 0.2 83.8 13.0//82.7 92.4 92.4|| 0.0 93.3 0.0
AA ||18.5 7.8 90.9// 0.0 0.0 43.7||1.3 5.7 6.2| 0.1 0.0 12.9//80.1 91.2 91.2

Table 3: Percentage of shift in pixel labels during adaptation for the cardiac dataset. A cell (i, ) in
the table has three values. The first value represents the percentage of pixels labeled i that are labeled
Jj after adaptation. The second value represents the percentage of switching pixels whose true label is
i - lower is better. The third value represents the percentage of switching pixels whose true label is j -
higher is better. Bolded cells denote label shift where more than 1% of pixels migrate from i to j.

Ignore Liver R. Kidney L. Kidney Spleen
Ignore ||94.6 98.4 98.4|| 3.0 18.0 81.6|| 0.7 23.5 74.3|| 0.7 34.9 62.6|| 1.0 19.3 80.5
Liver || 6.6 38.1 60.8/(92.6 91.3 91.3|| 0.8 10.4 55.1| 0.0 0.0 0.0 || 0.0 39.0 10.2

R.Kidney|| 5.0 13.1 86.9(/ 0.2 0.0 76.9|(94.8 94.7 94.7/[ 0.0 0.0 0.0 ([{0.0 0.0 0.0

L.Kidney|| 2.2 24.2 75.0{{ 0.1 0.0 0.0{ 0.0 23.7 0.0 |(97.5 87.8 87.8//0.2 0.0 7.2
Spleen {|23.1 20.8 79.2|| 0.1 20.2 0.0 [ 0.2 75.0 0.0|/ 0.0 69.4 0.0 ||76.6 78.7 78.7

Table 4: Percentage of shift in pixel labels during adaptation for the abdominal organ dataset. The
same methodology as in Table 3 is used.

The outcome of pixel label shift is analyzed in Tables 3 and 4. In Table 3 we observe
that for the cardiac dataset there exists significant inter-class label transfer, for approximately
20% of pixels, evenly distributed across classes. We see the majority of these shifts leading
to an improvement in labeling accuracy, including all shifts where at least 1% of labels mi-
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grate, which is in line with our other reported results. These findings also corroborate with
our observed embeddings. We can see from Table 3 that during adaptation there is significant
label migration between LVC and MYO, and this can be observed in the increased separa-
tion between the two classes in Figures 2(b) and 2(c). For the abdominal organ dataset we
observe significantly less label shift between classes, with most of the activity involving pre-
viously labeled pixels being correctly le-labeled as Ignore after adaptation, or pixels initially
in Ignore being correctly le-labeled to their appropriate class.

We also perform an ablative experiment for the @ parameter using the the cardiac dataset
in Table 5. We observe a large increase in performance when using more than one component
per class. However, this benefit decreases as more components are employed. We observe
using more than 2 components increases the Dice score, and more than a 30% drop in ASSD.
We conclude a larger number of class components can offer a more expressive approximation
of the source distribution, leading to improvements for segmentation accuracy and organ
border quality. In our study we choose @ = 3 to balance performance and complexity.

Full experimental setup and additional results are provided in the appendix.

Dice Average Symmetric Surface Distance
o-SFS| AA LAC LVC MYO|Average| AA LAC LVC MYO| Average
1-SFS|86.2 83.5 754 709 | 79.0 [I11.1 5.0 10.8 3.6 9.8
3-SFS|88.0 83.7 81.0 72.5| 813 |63 72 47 6.1 6.1
5-SFS|88.0 83.8 81.9 733 | 81.7 |62 74 48 57 6.0
7-SFS |86.8 84.8 82.0 73.5| 81.8 |48 72 44 56 5.9

Table 5: Segmentation performance versus @ for the Cardiac MR — CT adaptation task.

Cardiac CT Scans Abdominal CT Scans

=

Pre-Adapl  CT Image
"K ’E
- H

Figure 5: Segmentation maps of CT samples. The first five columns correspond to cardiac images,
and last five correspond to abdominal images. From top to bottom: gray-scale CT images, source-only
predictions, post-adaptation predictions, supervised predictions on the CT data, ground truth.

6 Conclusion

We developed a novel UDA algorithm for semantic segmentation of confidential medical
data. Our idea is based on estimating the source internal distribution via a GMM and then
using is to align source and target domains indirectly. We provided a empirical analysis to
demonstrate why our method is effective and it leads to competitive performance on two
real-world datasets when compared to state of the art approaches in medical semantic seg-
mentation that require joint access to source and target data for adaptation.
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7 Appendix

7.1 Experimental Setup

We use the same network architecture on both the cardiac and organ image segmentation
UDA task. We use a DeepLabV3 [10] feature extractor with a VGG16 backbone [56], fol-
lowed by a one layer classifier.

We train the network on the supervised source samples with a training schedule of 30,000
epochs repeated 3 times. The optimizer of choice is Adam with learning rate le —4, € =
le — 6 and decay of le — 6. We use the standard pixel-wise cross entropy loss, and batch
size of 16. For the abdominal organ segmentation dataset, we observed better performance
by using a weighted cross entropy loss.

We learn the empirical internal distribution using a parameter p = .97. We observed
good separability in the latent distribution for p > .9.

We use @ = 3 components per each of the K classes, though as seen in Table 5, a larger
o could potentially lead to further performance gains. @ = 3 strikes a balance between the
complexity of the GMM model and realized performance.

Finally, when performing adaptation, we performed 35,000 epochs of training, with a
batch size of 32. We again use an Adam optimizer with a learning rate of Se —5, € = le—1
and decay of le — 6. Due to GPU memory constraints leading to a limited amount of image
slices per batch, and therefore a large label distribution shifts between target batches, when
sampling from the learnt GMMs we approximate the target distribution via the batch label
distribution.

Experiments were done on a NVIDIA RTX 3090 GPU. Code is provided in the supple-
mentary material section of this submission, and will be made freely available online at a
later date.

7.2 Additional Ablation Studies

We further empirically analyze different components of our approach to demonstrate their
effectiveness.

Fine-tuning the classifier. As we discussed in the main body of the paper, after learning
an internal distribution characterizing the source embeddings, we align the target embed-
dings to this distribution by minimizing Sliced Wasserstein Distance. In addition, we also
further train the classifier on samples from this distribution to account for differences to
the original source embedding distribution. We next discuss the benefit of fine tuning the
classifier, based on the results in Table 6.

Metric | Fine-Tuned Classifier | Source Domain Classifier
Dice 81.3 80.9
ASSD 6.1 7.35

Table 6: Target performance on the MMWHS adaptation task of our method with and with-
out fine tuning the classifier on samples from the internal distribution. Bolded values indicate
best performance.

Given the learnt empirical means and covariances for the internal distribution, we com-
pare the performance after target domain adaptation between a model that fine tunes the
classifier and a model that does not update the classifier after source training. As expected,
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fine tuning the classifier offers a prediction boost, even if the difference is not a significant
one. The internal distribution is meant to encourage the target embeddings to share a sim-
ilar latent space with the source embeddings, and fine tuning the classifier accounts for the
distribution shift between the source embeddings and learnt internal distribution.

Filter visualization. We also investigate the information encoded in the convolutional
filters before and after adaptation. Based on our results, we expect network filters to retain
most of their structure from source training, and not alter this structure too much during
distribution matching. We exemplify this in Figure 6. We record the visual characteristics
of the network filters after the first two convolutional layers and the first four convolutional
layers. We observe filters appear visually similar before and after adaptation, signifying im-
age structural features learnt by the network do not undergo significant change, even though
changes in filter values can be observed under the Difference columns.

Second Convolutional Layer Fourth Convolutional Layer

Pre-Adaptation  Post-Adaptation  Difference Pre-Adaptation  Post-Adaptation  Difference

— Ige . i
Segmentation Map - i . .

Figure 6: Filter maps of a cardiac CT image before and after model adaptation. In the case
of filter differences in absolute value, dark grey symbolizes lower values, while light gray
symbolizes higher values.




