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Unsupervised Domain Adaptation (UDA) addresses g
scenarios when the application domain (target domain) of a ——| DeepLabV3 | ——)| Classifier C
model has a different data distribution (domain shift) from C olOm
the training domain (source domain), which negatively Learning ‘he Lo =
. . . 1ntermed|ate z
impacts generalization distribution d’Sfrzb f om g <

Adaptation °n for , :Sl Sifiay medlat E
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image segmentation, as labeling new images requires
expert knowledge, and joint access to the source and
target datasets may violate privacy regulations
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Objective

Source-free adaptation on the unlabeled target domain. The Wasserstein distance

Supervised Post-Adapt

against the intermediate distribution is minimized, and the classifier fine tuned.

We develop an UDA algorithm which mitigates domain
shift without the need for joint source and target domain
access (source-free):
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