
Analysing Training-Data Leakage from Gradients
through Linear Systems and Gradient Matching

Introduction
• Given training gradients of the input image, its label, the model

architecture, can we reconstruct the input image?

• We will focus on the case when the batch size in training is one.
• We adopt an iterative approach. The solution is approximate if the

layer is convolutional, or is closed-form if it is fully connected.

Experiments

References
[1] Ligeng Zhu, Zhijian Liu, and Song Han. “Deep Leakage from Gradients”. In: Advances in Neural
Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019, pp. 14774–
14784.

[2] Junyi Zhu and Matthew Blaschko. “R-GAP: Recursive Gradient Attack on Privacy”. In: International
Conference on Learning Representations - (ICLR). 2021.

Cangxiong Chen and Neill D.F. Campbell

An important motivation is to understand how we can protect local
training data from participants in federated learning, when there is a
server-side adversary with access to the local training updates.

Notation
We provide a summary of notation used here. Superscript with
parenthesis indicates the index of a layer in the network.

Summary
At each convolutional layer, we solve a least square problem followed by corrections from gradient matching.

Reconstructions of training images for three architectures. Values of the metric are also shown for each architecture

• We advance our understanding of existing GLA by developing a unified
framework which combines solving a linear system at each layer accompanied
by gradient matching for corrections.

• The framework partially attributes the vulnerability of a deep network against
GTA to its architecture. We provide a metric to quantify this vulnerability.

• For future work, we are interested in problems such as batch-image
reconstruction and other architectures such as ResNets.

A Hybrid Framework for GLA

Truck

?

Local
data

participant

Local
data

participant

…

Server

• Gradient-leakage-attack (GLA) methods such as DLG [1] and R-
GAP [2] have demonstrated that this is possible for an image
classification model.

• We can group existing GLA methods into optimisation-based or
analytic ones.

• In this work, we provide a unified framework to understand
existing GLA methods.

Forward propagation defines weight constraints

Backward propagation defines gradient constraints

Corrections using gradient matching

…

target

Fully connected

reconstruction
Truck

C
onvolutional

C
onvolutional

C
onvolutional

…

4 CHEN, CAMPBELL: ANALYSING TRAINING-DATA LEAKAGE FROM GRADIENTS

networks composed of concatenated shallow building blocks of CNNs, as we have specified
an exhaustive set of those building blocks for CNNs. The quality of reconstruction can be
estimated by the average of the rank deficiency from each layer weighted by the position of
the layer in the network.

We assume the ground-truth label of the target image is given. This will not lose gen-
erality, because otherwise we can reconstruct the true label via observing the signs of the
gradients of the weights in the fully connected layer according to [11]. We assume that the
activation function for each layer is piecewise invertible and piecewise differentiable. For
simplicity we do not include pooling in the design of the network. Notice that average pool-
ing can be regarded as convolution. Also notice that CNN without pooling was considered
in [10].
Notations We introduce notations used throughout the paper.

www(i): weight from layer i of size m by n, where 0  i  d and d is the total number of layers.
For simplicity of notation, we omit i in m and n when possible, but readers should be aware
that the size of the weight need not be the same for different layers. For a convolutional
layer, it denotes the circulant representation of the kernel.
L(xxx,yyy;www): Cross entropy loss function of the network with input image xxx, label yyy and weight
www. We use L(i)(xxx,yyy;www) for the shorthand notation denoting the loss with the truncated model
starting from layer i with corresponding intermediate input xxx(i), weight from the i-th layer
onward. We will omit the label yyy where possible.
zzz(i): the linear output of the layer i before activation given by www(i)xxx(i) + bbb(i) with input xxx(i)

and bias bbb(i). This also expresses the convolutional operation following the circulant form of
www(i).
aaa(i)(·): activation function after linearity in vector form. We use the unbold letter a(i) to
denote its component.
|.|: when applied to a matrix, the absolute value sign |.| denotes the number of elements.
w,x,z,b: we use unbold letters with subscripts to denote the component at specified indices
of the corresponding matrix in bold letters.

To reconstruct the input image, we adopt an iterative approach similar to [12]: starting from
the label, we reconstruct the input to the last layer and repeat this procedure layer by layer,
each time making use of the reconstructed input to the succeeding layer. We will treat the
cases of a fully-connected layer and a convolutional layer separately. First we treat the
forward and backward pass in training a neural network as imposing two linear constraints
on the input to each layer.
Weight and gradient constraints: At a given layer i, the forward and backward propagation
gives rise to the following equations:

www(i)xxx(i) +bbb(i) = zzz(i), (1a)

—zzz(i)L · xxx(i) = —www(i)L. (1b)

We note that this represents both the fully-connected and the convolutional cases, using the
circulant representation for the weight www(i) and the gradient —zzz(i)L. Both zzz(i) and —www(i)L
are written as vectors. From the reconstruction point of view, we treat xxx(i) as the unknown
and regard the above equations as weight and gradient constraints imposed on the unknown.
The term zzz(i) is computed from inverting the reconstruction from the subsequent layer xxx(i+1)

using inverse of the activation function:

CHEN, CAMPBELL: ANALYSING TRAINING-DATA LEAKAGE FROM GRADIENTS 5

zzz(i) = (aaa(i))�1(xxx(i+1)). (2)

The term —zzz(i)L can be computed by using the following relations deduced from backpropa-
gation:

—zzz(i)L= —xxx(i+1)L ·—zzz(i)aaa
(i), (3a)

—xxx(i)L= —xxx(i+1)L ·—zzz(i)aaa
(i) ·www(i). (3b)

We notice that the circulant representation of the gradient —zzz(i)L is determined by the circu-
lant form of the weight www(i) from backpropagating through the weight constraint (1a).

3.1 Fully connected layer

For a fully connected layer, the input can be solved uniquely in closed form. We summarise
the solution in the following lemma. The case of non-zero bias is due to [1] and we show
that it can be extended to the general case. Please see Supplementary ?? for the proof.

Lemma 3.1. If a fully connected layer has non-zero bias bbb(i) = (b(i)1 , ...,b(i)m) 2 Rm, then
the input xxx(i) = (x(i)1 , ...,x(i)n) 2 Rn is uniquely determined from the gradient constraint (1b).
Suppose 9k,1  k  m, such that b(i)k 6= 0 and ∂L

∂b(i)k
6= 0. Then xxx(i) is given by:

x(i)l =
∂L

∂w(i)
kl

∂L

∂b(i)k

!�1

, 1  l  n. (4)

More generally, assuming both ∂L
∂x(i+1)

k
and ∂a(i)

k

∂ z(i)k
are nonzero, we have

x(i)l =
∂L

∂w(i)
kl

∂L

∂x(i+1)
k

!�1
∂a(i)

k

∂ z(i)k

!�1

. (5)

Remark 3.2. The reason that we can solve for xxx in closed form described above is essentially
because there is no weight sharing in a fully-connected layer. This implies that the circulant
form of —zzz(i)L consists of blocks of diagonal matrices with the same element along the
diagonal in each block, which allows (1b) to be solved exactly.

3.2 Convolutional layer

For a convolutional layer, we can no longer uniquely determine the input in general because
of weight sharing. We first build on the work in [12] and formulate a linear system by
combining the weight and gradient constraints from (1a) and (1b) into a single linear system
of the input xxx. Define uuu(i),vvv(i) to denote the following block matrices

uuu(i) :=


www(i)

—zzz(i)L

�
,vvv(i) :=


(aaa(i))�1(xxx(i+1))

—www(i)L

�
. (6)

Here both the term (aaa(i))�1(xxx(i+1)) and the term —www(i)L are written as vectors. The term
—www(i)L has the same dimension as |www(i)|, i.e. the number of elements of the weight in its
non-circulant form as a 4-dimensional array.

6 CHEN, CAMPBELL: ANALYSING TRAINING-DATA LEAKAGE FROM GRADIENTS

Notice that we can absorb the bias term into the product www(i)xxx(i) by replacing the the
weight matrix with its augmentation by bbb(i) and xxx(i) by its augmentation by one. Adopting
this notation, (1a) and (1b) can be written as:

uuu(i)xxx(i)� vvv(i) = 0. (7)

Recall that under our assumptions and (2), we can get zzz(i) that defines vvv(i) by inverting
the solution to the reconstruction problem for the following layer and other coefficients in
uuu(i) and vvv(i) are given from training. Based on [12], we view (7) as a linear system for
the input xxx(i) to the current layer i. In general, uuu(i) may not be square and it can be rank-
deficient, which means we can only get an estimated solution using the pseudo inverse of
uuu(i) . Proceeding layer-by-layer in this manner, we can obtain a reconstruction of the input
to the network. This is the R-GAP approach introduced in [12]. We think there are several
sources of error in the solution using this approach alone:

1. The linear system (7) is defined using estimated value of zzz by inverting the solution
from the succeeding layer. So the error from reconstructing the input to the succeeding
layer will carry over to the current layer.

2. Pseudo inverse to a linear system is not unique in general and a minimum norm solu-
tion might not be the best one in our reconstruction problem.

3. Bad conditioning of uuu(i) can contribute to the error of the estimated solution.

To tackle these issues, we propose a correction procedure based on the idea of gradient
matching.
Correcting the approximated solution: From the theory of linear systems, we know that
we can get an approximated solution to a linear system such as (7) by solving a least square
problem:

xxx(i)LS := argmin
xxx

||uuu(i)xxx� vvv(i)||2. (8)

The solution is not unique without requiring the norm of the solution to be minimal: the sum
of a given solution with another vector xxx000 such that uuu(i)xxx000 = 0 is still a solution. On the other
hand, the solution with the minimum norm may not be the most accurate one for our recon-
struction problem. Assuming xxxLS is the minimum norm solution to the least square problem
(8) obtained by using the Singular Value Decomposition (e.g. by Theorem 5.5.1 in [4]), we
propose to correct it using the idea of gradient matching from [13]. More precisely, after we
have obtained a solution xxx(i)LS at a layer, we formulate and solve the following optimisation
problem:

argmin
xxx

D
h
—wwwL(i)(xxx;www)|www=www⇤ ,—wwwL(i)(xxxtrue;www)|www=www⇤

i
, subject to uuu(i)xxx� vvv(i) = 0. (9)

where xxxtrue is the target image, www⇤ are given weights and D [·, ·] is a chosen distance function.
Instead of taking D [·, ·] to be the L2-norm as in [13], we adopt the cosine distance function
proposed in [3] because we believe it is less sensitive to the stage of training. More precisely,
we define D [·, ·] to be

D [xxx1,xxx2] := 1� hxxx1,xxx2i
||xxx1|| · ||xxx2||

, (10)

for n-dimensional vectors xxx1 and xxx2, where h·, ·i and || · || are the Euclidean inner product
and norm respectively.

CHEN, CAMPBELL: ANALYSING TRAINING-DATA LEAKAGE FROM GRADIENTS 7

Algorithm 1 Hybrid method.
Input: Number of layers d of the network; True label yyy of the target image xxxtrue; Initial weights www⇤; Gradients
—wwwL(i)(xxx;www)|www=www⇤ at each layer i,0  i  d �1; Number of iterations N(i) at each layer i.
Initialise xxx(d) = yyy.
for i = d �1 to 0 {iterate backward from the last layer of the network} do

Compute the gradient —xxx(i+1)L(xxxtrue;www⇤)
��
xxx(i+1)=xxx(i+1) using xxx(i+1).

Compute —zzz(i)L(xxxtrue;www⇤)
��
zzz(i)=(aaa(i))�1(x(i+1))

from —xxx(i+1)L.
if the current layer is fully connected then

solve for xxx(i) in close form.
else if the current layer is convolutional then

Define uuu(i),vvv(i) using (aaa(i))�1(xxx(i+1)) and gradients of L computed above.
Get an estimate xxx(i)LS of the input to layer i by solving the linear system uuu(i)xxx� vvv(i) = 0.
Get a corrected estimate xxx(i) based on xxx(i)LS by solving the layerwise optimisation problem with initialisation
xxx(i)LS for N(i) iterations. {only compute and use gradients from the current layer to the last one}

end if

end for

Output: Reconstruction xxx(0) of the target xxx.

In numerical experiments, we find it helpful in terms of reconstruction quality to add
total variation to the objective function (9). The optimisation problem described by (9) will
now become:

xxx(i) := argmin
xxx

n
µ1D

h
—wwwL(i)(xxx;www)|www=www⇤ ,—wwwL(i)(xxxtrue;www)|www=www⇤

i
+µ2TV(xxx)

o
,

subject to uuu(i)xxx� vvv(i) = 0 and with initialisation xxx(i)LS.

(11)

where µ1,µ2 2 R are some given weights. Performing the correction described in (11)
at each convolutional layer, we have a hybrid method to reconstruct the input presented in
Algorithm 1. We observe that if we turn the hard constraint in (11) into a soft one, the
algorithm will converge more quickly. More details are provided in section ??.
A security measure: In light of the hybrid framework given for a convolutional layer, the
problem of reconstructing a training image can be viewed as consisting of two parts : i. An
iterative procedure starting from the output of the network ; ii. at each layer, solving a linear
system with corrections using gradient matching when the layer is convolutional. Based on
this insight, we define a metric that measures the efficacy of the hybrid method given by
Algorithm 1, which depends partially on the architecture of the target model.

Definition 3.3. Suppose the model M has d convolutional layers indexed by 1, ...,d, fol-
lowed by a fully-connected layer. We define the following metric:

c(M) :=
d

Â
i=1

d � (i�1)
d

·
�

rank(uuu(i))�ni
�
, (12)

where uuu(i) is defined in (6) and ni is the dimension of the input for the i-th layer as a vector.

Because rank(uuu(i))  ni for each convolutional layer, c(M) will be non-positive. The
larger the value of the metric is, the less secure the model tends to be and the more likely it is
to create better reconstructions. The metric is better interpreted as an estimate of the security
of the model against the hybrid method. Our experiments have shown that it is possible to
fully reconstruct the input to a model M using our method when c(M) = 0. For more details
on the thinking behind Definition 3.3, please refer to Section ?? in the Supplementary.

CHEN, CAMPBELL: ANALYSING TRAINING-DATA LEAKAGE FROM GRADIENTS 7

Algorithm 1 Hybrid method.
Input: Number of layers d of the network; True label yyy of the target image xxxtrue; Initial weights www⇤; Gradients
—wwwL(i)(xxx;www)|www=www⇤ at each layer i,0  i  d �1; Number of iterations N(i) at each layer i.
Initialise xxx(d) = yyy.
for i = d �1 to 0 {iterate backward from the last layer of the network} do

Compute the gradient —xxx(i+1)L(xxxtrue;www⇤)
��
xxx(i+1)=xxx(i+1) using xxx(i+1).

Compute —zzz(i)L(xxxtrue;www⇤)
��
zzz(i)=(aaa(i))�1(x(i+1))

from —xxx(i+1)L.
if the current layer is fully connected then

solve for xxx(i) in close form.
else if the current layer is convolutional then

Define uuu(i),vvv(i) using (aaa(i))�1(xxx(i+1)) and gradients of L computed above.
Get an estimate xxx(i)LS of the input to layer i by solving the linear system uuu(i)xxx� vvv(i) = 0.
Get a corrected estimate xxx(i) based on xxx(i)LS by solving the layerwise optimisation problem with initialisation
xxx(i)LS for N(i) iterations. {only compute and use gradients from the current layer to the last one}

end if

end for

Output: Reconstruction xxx(0) of the target xxx.

In numerical experiments, we find it helpful in terms of reconstruction quality to add
total variation to the objective function (9). The optimisation problem described by (9) will
now become:

xxx(i) := argmin
xxx

n
µ1D

h
—wwwL(i)(xxx;www)|www=www⇤ ,—wwwL(i)(xxxtrue;www)|www=www⇤

i
+µ2TV(xxx)

o
,

subject to uuu(i)xxx� vvv(i) = 0 and with initialisation xxx(i)LS.

(11)

where µ1,µ2 2 R are some given weights. Performing the correction described in (11)
at each convolutional layer, we have a hybrid method to reconstruct the input presented in
Algorithm 1. We observe that if we turn the hard constraint in (11) into a soft one, the
algorithm will converge more quickly. More details are provided in section ??.
A security measure: In light of the hybrid framework given for a convolutional layer, the
problem of reconstructing a training image can be viewed as consisting of two parts : i. An
iterative procedure starting from the output of the network ; ii. at each layer, solving a linear
system with corrections using gradient matching when the layer is convolutional. Based on
this insight, we define a metric that measures the efficacy of the hybrid method given by
Algorithm 1, which depends partially on the architecture of the target model.

Definition 3.3. Suppose the model M has d convolutional layers indexed by 1, ...,d, fol-
lowed by a fully-connected layer. We define the following metric:

c(M) :=
d

Â
i=1

d � (i�1)
d

·
�

rank(uuu(i))�ni
�
, (12)

where uuu(i) is defined in (6) and ni is the dimension of the input for the i-th layer as a vector.

Because rank(uuu(i))  ni for each convolutional layer, c(M) will be non-positive. The
larger the value of the metric is, the less secure the model tends to be and the more likely it is
to create better reconstructions. The metric is better interpreted as an estimate of the security
of the model against the hybrid method. Our experiments have shown that it is possible to
fully reconstruct the input to a model M using our method when c(M) = 0. For more details
on the thinking behind Definition 3.3, please refer to Section ?? in the Supplementary.

Index(Architecture 1) is 0

Index(Architecture 2) is 0

Index(Architecture 3) is -2772

Architecture 1 30*30*6
Conv2d

FC, 5400*10, id
tanh

Architecture 2 30*30*6
Conv2d

tanh
FC, 7056*10, id

tanh

Architecture 3 30*30*6
Conv2d

14*14*5
conv2d

FC, 363*10, id

28*28*9
Conv2d

tanh tanh
11*11*3
conv2d

tanh

CHEN, CAMPBELL: ANALYSING TRAINING-DATA LEAKAGE FROM GRADIENTS 9

The target image will go through one forward and backward pass to generate the gradients.
For each convolutional layer, we assume Tanh activation and for each fully-connected layer
we assume identity activation. We adopt the unconstrained strategy (??) from Section ??

(a
) V

ar
ia

nt
1

(b
) V

ar
ia

nt
2

(c
) V

ar
ia

nt
3

(d
) V

ar
ia

nt
4

Figure 2: Comparisons of reconstructions among all approaches for CNN3. Two examples are presented for each
architecture. Similar to Figure 1, we notice that DLG and CosineTV show similar performance although CosineTV
provides improvement overall. Our hybrid method is consistent with R-GAP but produces smoother results. Also
notice that all methods generally produce best results in Figure 2c and worst in Figure 2d, which is mostly consistent
with the value of the metric c(M) given in Table 1.

in Algorithm 1, using ADAM optimiser from [6] with default learning rate of 0.001. The
architecture of the models in the experiments are shown in Table 1, together with the values
of the metric c(M). For each variant of the model, we compare our method with that of
DLG from [13], R-GAP from [12], and [3] (which we name ‘CosineTV’ for short). For
details of the number of iterations for all the methods, and other hyperparameter settings in
the experiment, please refer to Section ?? in the Supplementary.

We present sample outputs in Figure 1, Figure 2 with their MSE and PSNR scores in
Table ?? in the Supplementary. Comparing the reconstruction qualities of results in Figure 1,
Figure 2 with the values of c(M) in Table 1, we notice that it is more likely for all methods to
have reconstructions with better visual quality on architectures with a bigger value of c(M),
despite that the relation is not strictly monotonic.

(a
)pr

e-
tra

in
ed

Va
ria

nt
1

(b
)pr

e-
tra

in
ed

Va
ria

nt
2

Figure 3: Comparisons of reconstructions among all approaches for pre-trained CNN4. Two examples are presented
for each architecture. Compared to Figure 1c and 1d, we notice that reconstructions from all methods have wors-
ened, and DLG and CosineTV are no longer producing visually recognisable results. On the other hand, R-GAP
and our hybrid method are still showing more recognisable results.

It is worth noticing that in CNN2 Variant 1 and CNN3 Variant 3, all of their convolutional
layers have positive index given by the summand rank(uuu(i))�ni in (12), which explains the
most information leakage about the training image compared to other variants. On the other
hand, we noticed that the value of rank(uuu(i))�ni is negative in the first layer in CNN3 Variant
4. Although it becomes positive in layer 2, it seems that this cannot make up for the loss of

Reconstructions for a 4-layer CNN. Left: when the network is untrained; Right: when the network is pre-trained

6 CHEN, CAMPBELL: ANALYSING TRAINING-DATA LEAKAGE FROM GRADIENTS

Notice that we can absorb the bias term into the product www(i)xxx(i) by replacing the the
weight matrix with its augmentation by bbb(i) and xxx(i) by its augmentation by one. Adopting
this notation, (1a) and (1b) can be written as:

uuu(i)xxx(i)� vvv(i) = 0. (7)

Recall that under our assumptions and (2), we can get zzz(i) that defines vvv(i) by inverting
the solution to the reconstruction problem for the following layer and other coefficients in
uuu(i) and vvv(i) are given from training. Based on [12], we view (7) as a linear system for
the input xxx(i) to the current layer i. In general, uuu(i) may not be square and it can be rank-
deficient, which means we can only get an estimated solution using the pseudo inverse of
uuu(i) . Proceeding layer-by-layer in this manner, we can obtain a reconstruction of the input
to the network. This is the R-GAP approach introduced in [12]. We think there are several
sources of error in the solution using this approach alone:

1. The linear system (7) is defined using estimated value of zzz by inverting the solution
from the succeeding layer. So the error from reconstructing the input to the succeeding
layer will carry over to the current layer.

2. Pseudo inverse to a linear system is not unique in general and a minimum norm solu-
tion might not be the best one in our reconstruction problem.

3. Bad conditioning of uuu(i) can contribute to the error of the estimated solution.

To tackle these issues, we propose a correction procedure based on the idea of gradient
matching.
Correcting the approximated solution: From the theory of linear systems, we know that
we can get an approximated solution to a linear system such as (7) by solving a least square
problem:

argmin
xxx

||uuu(i)xxx� vvv(i)||2. (8)

The solution is not unique without requiring the norm of the solution to be minimal: the sum
of a given solution with another vector xxx000 such that uuu(i)xxx000 = 0 is still a solution. On the other
hand, the solution with the minimum norm may not be the most accurate one for our recon-
struction problem. Assuming xxxLS is the minimum norm solution to the least square problem
(8) obtained by using the Singular Value Decomposition (e.g. by Theorem 5.5.1 in [4]), we
propose to correct it using the idea of gradient matching from [13]. More precisely, after we
have obtained a solution xxx(i)LS at a layer, we formulate and solve the following optimisation
problem:

argmin
xxx

D
h
—wwwL(i)(xxx;www)|www=www⇤ ,—wwwL(i)(xxxtrue;www)|www=www⇤

i
, subject to uuu(i)xxx� vvv(i) = 0. (9)

where xxxtrue is the target image, www⇤ are given weights and D [·, ·] is a chosen distance function.
Instead of taking D [·, ·] to be the L2-norm as in [13], we adopt the cosine distance function
proposed in [3] because we believe it is less sensitive to the stage of training. More precisely,
we define D [·, ·] to be

D [xxx1,xxx2] := 1� hxxx1,xxx2i
||xxx1|| · ||xxx2||

, (10)

for n-dimensional vectors xxx1 and xxx2, where h·, ·i and || · || are the Euclidean inner product
and norm respectively.

In numerical experiments, we find it helpful in terms of reconstruction quality to add
total variation to the objective function (9). The optimisation problem described by (9) will
now become:

CHEN, CAMPBELL: ANALYSING TRAINING-DATA LEAKAGE FROM GRADIENTS 7

Algorithm 1 Hybrid method.
Input: Number of layers d of the network; True label yyy of the target image xxxtrue; Initial weights www⇤; Gradients
—wwwL(i)(xxx;www)|www=www⇤ at each layer i,0  i  d �1; Number of iterations N(i) at each layer i.
Initialise xxx(d) = yyy.
for i = d �1 to 0 {iterate backward from the last layer of the network} do

Compute the gradient —xxx(i+1)L(xxxtrue;www⇤)
��
xxx(i+1)=xxx(i+1) using xxx(i+1).

Compute —zzz(i)L(xxxtrue;www⇤)
��
zzz(i)=(aaa(i))�1(x(i+1))

from —xxx(i+1)L.
if the current layer is fully connected then

solve for xxx(i) in close form.
else if the current layer is convolutional then

Define uuu(i),vvv(i) using (aaa(i))�1(xxx(i+1)) and gradients of L computed above.
Get an estimate xxx(i)LS of the input to layer i by solving the linear system uuu(i)xxx� vvv(i) = 0.
Get a corrected estimate xxx(i) based on xxx(i)LS by solving the layerwise optimisation problem with initialisation
xxx(i)LS for N(i) iterations. {only compute and use gradients from the current layer to the last one}

end if

end for

Output: Reconstruction xxx(0) of the target xxx.

In numerical experiments, we find it helpful in terms of reconstruction quality to add
total variation to the objective function (9). The optimisation problem described by (9) will
now become:

xxx(i) := argmin
xxx

n
µ1D

h
—wwwL(i)(xxx;www)|www=www⇤ ,—wwwL(i)(xxxtrue;www)|www=www⇤

i
+µ2TV(xxx)

o
,

subject to uuu(i)xxx� vvv(i) = 0 and with initialisation xxx(i)LS.

(11)

where µ1,µ2 2 R are some given weights. Performing the correction described in (11)
at each convolutional layer, we have a hybrid method to reconstruct the input presented in
Algorithm 1. We observe that if we turn the hard constraint in (11) into a soft one, the
algorithm will converge more quickly. More details are provided in section ??.
A security measure: In light of the hybrid framework given for a convolutional layer, the
problem of reconstructing a training image can be viewed as consisting of two parts : i. An
iterative procedure starting from the output of the network ; ii. at each layer, solving a linear
system with corrections using gradient matching when the layer is convolutional. Based on
this insight, we define a metric that measures the efficacy of the hybrid method given by
Algorithm 1, which depends partially on the architecture of the target model.

Definition. Suppose the model M has d convolutional layers indexed by 1, ...,d, followed
by a fully-connected layer. We define the following metric:

c(M) :=
d

Â
i=1

d � (i�1)
d

·
�

rank(uuu(i))�ni
�
,

where ni is the dimension of the input for the i-th layer as a vector.

Because rank(uuu(i))  ni for each convolutional layer, c(M) will be non-positive. The
larger the value of the metric is, the less secure the model tends to be and the more likely it is
to create better reconstructions. The metric is better interpreted as an estimate of the security
of the model against the hybrid method. Our experiments have shown that it is possible to

CHEN, CAMPBELL: ANALYSING TRAINING-DATA LEAKAGE FROM GRADIENTS 9

(a
) C

N
N

2
V

1

(b
) C

N
N

2
V

2

(c
) C

N
N

4
V

1

(d
) C

N
N

4
V

2

Figure 1: Comparisons of reconstructions among all approaches for CNN2 and CNN4. Two examples are presented
for each architecture. Observe that DLG is unable to reconstruct in all variants in CNN2 and in CNN4 Variant 1,
but is able to produce good reconstruction with artefact for CNN4 Variant 2. CosineTV is more stable than DLG
while R-GAP performs even more consistently. Our hybrid method improves the results from R-GAP and visually
reduces its checkerboard effect and produces results with better overall quality.

(a
) V

ar
ia

nt
1

(b
) V

ar
ia

nt
2

(c
) V

ar
ia

nt
3

(d
) V

ar
ia

nt
4

Figure 2: Comparisons of reconstructions among all approaches for CNN3. Two examples are presented for each
architecture. Similar to Figure 1, we notice that DLG and CosineTV show similar performance although CosineTV
provides improvement overall. Our hybrid method is consistent with R-GAP but produces smoother results. Also
notice that all methods generally produce best results in Figure 2c and worst in Figure 2d, which is mostly consistent
with the value of the metric c(M) given in Table 1.

(a
)pr

e-
tra

in
ed

Va
ria

nt
1

(b
)pr

e-
tra

in
ed

Va
ria

nt
2

Figure 3: Comparisons of reconstructions among all approaches for pre-trained CNN4. Two examples are presented
for each architecture. Compared to Figure 1c and 1d, we notice that reconstructions from all methods have wors-
ened, and DLG and CosineTV are no longer producing visually recognisable results. On the other hand, R-GAP
and our hybrid method are still showing more recognisable results.

It is worth noticing that in CNN2 Variant 1 and CNN3 Variant 3, all of their convolutional
layers have positive index given by the summand rank(uuu(i))�ni in (3.2), which explains the
most information leakage about the training image compared to other variants. On the other
hand, we noticed that the value of rank(uuu(i))�ni is negative in the first layer in CNN3 Variant
4. Although it becomes positive in layer 2, it seems that this cannot make up for the loss of

