Analysing Training-Data Leakage from Gradients through Linear Systems and Gradient Matching

Cangxiong Chen and Neill D.F. Campbell

Introduction

• Given training gradients of the input image, its label, the model architecture, can we reconstruct the input image?

- Gradient-leakage-attack (GLA) methods such as DLG [1] and R-GAP [2] have demonstrated that this is possible for an image classification model.
- We can group existing GLA methods into optimisation-based or analytic ones.
- In this work, we provide a unified framework to understand existing GLA methods.

An important motivation is to understand how we can protect local training data from participants in federated learning, when there is a server-side adversary with access to the local training updates.

Notation

We provide a summary of notation used here. Superscript with parenthesis indicates the index of a layer in the network.

 $w^{(i)}$: weight from layer *i* of size *m* by *n*, where $0 \le i \le d$ and *d* is the total number of layers. For simplicity of notation, we omit *i* in *m* and *n* when possible, but readers should be aware that the size of the weight need not be the same for different layers. For a convolutional layer, it denotes the circulant representation of the kernel.

 $\mathcal{L}(\mathbf{x}, \mathbf{y}; \mathbf{w})$: Cross entropy loss function of the network with input image \mathbf{x} , label \mathbf{y} and weight w. We use $\mathcal{L}^{(i)}(x, y; w)$ for the shorthand notation denoting the loss with the truncated model starting from layer i with corresponding intermediate input $\mathbf{x}^{(i)}$, weight from the i-th layer onward. We will omit the label **y** where possible.

 $z^{(i)}$: the linear output of the layer *i* before activation given by $w^{(i)}x^{(i)} + b^{(i)}$ with input $x^{(i)}$ and bias $\boldsymbol{b}^{(l)}$. This also expresses the convolutional operation following the circulant form of $w^{(i)}$

 $\boldsymbol{\alpha}^{(i)}(\cdot)$: activation function after linearity in vector form. We use the unbold letter $\boldsymbol{\alpha}^{(i)}$ to denote its component.

A Hybrid Framework for GLA reconstruction Forward propagation defines weight constraints Backward propagation defines gradient constraints

Corrections using gradient matching

We will focus on the case when the batch size in training is one. • We adopt an iterative approach. The solution is approximate if the layer is convolutional, or is closed-form if it is fully connected.

$$\boldsymbol{u}^{(i)} := \begin{bmatrix} \boldsymbol{w}^{(i)} \\ \nabla_{\boldsymbol{z}^{(i)}} \mathcal{L} \end{bmatrix}, \boldsymbol{v}^{(i)} := \begin{bmatrix} (\boldsymbol{\alpha}^{(i)})^{-1} (\boldsymbol{x}^{(i+1)}) \\ \nabla_{\boldsymbol{w}^{(i)}} \mathcal{L} \end{bmatrix}.$$
$$\boldsymbol{x}_{LS}^{(i)} := \operatorname*{argmin}_{\boldsymbol{x}} ||\boldsymbol{u}^{(i)}\boldsymbol{x} - \boldsymbol{v}^{(i)}||^{2}.$$
$$\bigcup_{\boldsymbol{x}} ||\boldsymbol{v}|| = \mathbf{v}^{(i)} ||\boldsymbol{x}| = \mathbf{v}^{(i)} ||\boldsymbol{v}| = \mathbf{v}^{(i)} ||\boldsymbol{x}| = \mathbf{v}^{(i)} ||\boldsymbol{x}$$

subje

$$\begin{bmatrix} \nabla_{\boldsymbol{w}} \mathcal{L}^{(i)}(\boldsymbol{x}; \boldsymbol{w}) |_{\boldsymbol{w}=\boldsymbol{w}^{*}}, \nabla_{\boldsymbol{w}} \mathcal{L}^{(i)}(\boldsymbol{x}_{true}; \boldsymbol{w}) |_{\boldsymbol{w}=\boldsymbol{w}^{*}} \end{bmatrix} + \mu_{2} \mathrm{TV}(\boldsymbol{x}) \Big\},\$$

$$\stackrel{(i)}{=} 0 \text{ and with initialisation } \boldsymbol{x}_{LS}^{(i)}.$$

$$\mathcal{D}[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}] := 1 - \frac{\langle \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \rangle}{||\boldsymbol{x}_{1}|| \cdot ||\boldsymbol{x}_{2}||}$$

At each convolutional layer, we solve a least square problem followed by corrections from gradient matching.

Algorithm 1 Hybrid method.

Input: Number of layers <i>d</i> of the network; True label <i>y</i> of the tar $\nabla_{\boldsymbol{w}} \mathcal{L}^{(i)}(\boldsymbol{x}; \boldsymbol{w}) _{\boldsymbol{w}=\boldsymbol{w}^*}$ at each layer $i, 0 \leq i \leq d-1$; Number of iterat
Initialise $\overline{\boldsymbol{x}^{(d)}} = \boldsymbol{y}$.
for $i = d - 1$ to 0 {iterate backward from the last layer of the network
Compute the gradient $\nabla_{\mathbf{x}^{(i+1)}} \mathcal{L}(\mathbf{x}_{true}; \mathbf{w}^*) \Big _{\mathbf{x}^{(i+1)} = \overline{\mathbf{x}^{(i+1)}}}$ using $\overline{\mathbf{x}^{(i-1)}}$
Compute $\nabla_{\boldsymbol{z}^{(i)}} \mathcal{L}(\boldsymbol{x}_{true}; \boldsymbol{w}^*) \Big _{\boldsymbol{z}^{(i)} = (\boldsymbol{\alpha}^{(i)})^{-1}(\overline{\boldsymbol{x}^{(i+1)}})}$ from $\nabla_{\boldsymbol{x}^{(i+1)}} \mathcal{L}$.
if the current layer is fully connected then
solve for $\overline{\boldsymbol{x}^{(i)}}$ in close form.
else if the current layer is convolutional then
Define $\boldsymbol{u}^{(i)}, \boldsymbol{v}^{(i)}$ using $(\boldsymbol{\alpha}^{(i)})^{-1}(\overline{\boldsymbol{x}^{(i+1)}})$ and gradients of \mathcal{L} contracted by the set of $\boldsymbol{\lambda}$ is the set of $\boldsymbol{\lambda}$ of $\boldsymbol{\lambda}$ is the set of $\boldsymbol{\lambda}$ and the set of $\boldsymbol{\lambda}$ is the set of $\boldsymbol{\lambda}$ is the set of $\boldsymbol{\lambda}$ is the set of $\boldsymbol{\lambda}$ and the set of $\boldsymbol{\lambda}$ is the set of $\boldsymbol{\lambda}$ is the set of $\boldsymbol{\lambda}$ is the set of $\boldsymbol{\lambda}$ and the set of $\boldsymbol{\lambda}$ is the set of \boldsymbol{\lambda} is the set of $\boldsymbol{\lambda}$ is the set of $\boldsymbol{\lambda}$ is the set of \boldsymbol{\lambda} is the set of $\boldsymbol{\lambda}$ is the set of \boldsymbol{\lambda} is the set of $\boldsymbol{\lambda}$ is the set of \boldsymbol{\lambda} is the set of \boldsymbol{\lambda} is the set of $\boldsymbol{\lambda}$ is the set of \boldsymbol{\lambda} is the set of $\boldsymbol{\lambda}$ is the set of \boldsymbol{\lambda} i
Get an estimate $\mathbf{x}_{LS}^{(i)}$ of the input to layer <i>i</i> by solving the line
Get a corrected estimate $\overline{x^{(i)}}$ based on $x_{LS}^{(i)}$ by solving the lay
$\mathbf{x}_{IS}^{(i)}$ for $N^{(i)}$ iterations. {only compute and use gradients from
end if
end for $\overline{u(0)}$ full to the formula $\overline{u(0)}$
Output: Reconstruction $\mathbf{x}^{(0)}$ of the target \mathbf{x} .

arget image x_{true} ; Initial weights w^* ; Gradients tions $N^{(i)}$ at each layer *i*.

work $\{\mathbf{do}_{+1}\}$

omputed above.

hear system $\boldsymbol{u}^{(i)}\boldsymbol{x} - \boldsymbol{v}^{(i)} = 0.$

verwise optimisation problem with initialisation om the current layer to the last one }

Reconstructions of training images for three architectures. Values of the metric are also shown for each architecture

Reconstructions for a 4-layer CNN. Left: when the network is untrained; Right: when the network is pre-trained

Definition. Suppose the model \mathcal{M} has d convolutional layers indexed by 1, ..., d, followed by a fully-connected layer. We define the following metric:

$$c(\mathcal{M}) := \sum_{i=1}^{d} \frac{d - (i-1)}{d} \cdot \left(\operatorname{rank}(\boldsymbol{u}^{(i)}) - n_i \right),$$

where n_i is the dimension of the input for the *i*-th layer as a vector.

30*30*6

Conv2d

tanh

tanh 14*14*5

30*30*6

Conv2d

30*30*6

Conv2d

Architecture 2

Architecture 3

Summary

- by gradient matching for corrections.
- GTA to its architecture. We provide a metric to quantify this vulnerability.
- For future work, we are interested in problems such as batch-image reconstruction and other architectures such as ResNets.

References

[1] Ligeng Zhu, Zhijian Liu, and Song Han. "Deep Leakage from Gradients". In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019, pp. 14774-14784.

[2] Junyi Zhu and Matthew Blaschko. "R-GAP: Recursive Gradient Attack on Privacy". In: International Conference on Learning Representations - (ICLR). 2021.

• We advance our understanding of existing GLA by developing a unified framework which combines solving a linear system at each layer accompanied

• The framework partially attributes the vulnerability of a deep network against