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Abstract

Classical machine learners are designed only to tackle one task and suffer catastrophic
forgetting as new tasks or classes emerge. To address this shortcoming, continual machine
learners are elaborated to commendably learn a stream of tasks with domain and class
shifts among different tasks. In this paper, we propose a general feature-propagation
based contrastive continual learning method for image recognition in an online fashion
which is capable of handling multiple continual learning scenarios. Specifically, we
align the current and previous representation spaces by means of feature propagation and
contrastive representation learning to bridge the domain shifts among distinct tasks. To
further mitigate the class-wise shifts of the feature representation, a supervised contrastive
loss is exploited to make the image embeddings of the same class closer than those
of different classes. The extensive experimental results demonstrate the outstanding
performance of the proposed method in multiple image classification tasks (MNIST,
CIFAR-10/100 and Tiny ImageNet) compared to other cutting-edge continual learning
methods.

1 Introduction
In the real world, the environment is not set in stone. The machine learner is desired to
favorably respond to the changing environment like humans, by acquiring the new knowledge
rapidly without forgetting what has learned in the past. Towards this end, continual learning
(CL) [35, 46] came into being and has attracted a surge of interest in computer vision tasks
such as image recognition or segmentation, video recognition, etc. In this work, we focus on
the continual learning applied to image recognition. Specifically, the model is presented with
a stream of non-i.i.d. image data and can only learn one task at a time without accessing past
task data. Therefore, the major challenge is the issue of catastrophic forgetting [17, 29] for
previously learned images. To tackle such problem, a plethora of CL methods were proposed,
as well as a variety of evaluation protocols and a systematic categorization of CL scenarios.

As categorized by [19, 50], continual learning has three distinct scenarios - task incremen-
tal learning, domain incremental learning and class incremental learning - with increasing
difficulty. The task incremental learning [26, 54] is the easiest CL setting where task iden-
tifiers are provided at test time and a multi-head network is applied. Explicitly, the unique
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Figure 1: An overview of the proposed method CCL-FP+. ψo is the feature extractor whose
state is after learning task t−1 but before task t, and remains fixed during the training. ψ

is the feature extractor that is being optimized. The minibatch for each training iteration
in generated by concatenating a minibatch BDt from the current task data Dt with another
minibatch BM from the memory setM.

feature extractor is shared across different tasks but the classifiers are task-specific. By con-
trast, the domain incremental learning [10, 27] makes use of a single-head network thereby
the task identifiers are not required at the test stage. The class incremental learning [33] as a
more realistic but challenging CL scenario learns new tasks continually with a single-head
network but the units of the classifier increases with the advent of new classes.

Distinct from the majority of prior continual learning work which just tackles certain
continual learning scenarios, in this paper we propose a general feature propagation based
contrastive continual learning method to manage all of them. Most existing continual learning
methods focus the efforts on retaining either model parameters [22, 39] or functions [3, 31]
whereas we lay our stress on the representation space. To protect the feature space from
drastically changing by aligning the current and past embedding spaces during learning
the new task, we desire the model to preserve considerable past knowledge without losing
the ability to adapt to new tasks. Concretely, the method consists of three components.
First, the current image embeddings are re-represented by being integrated with the previous
corresponding ones via feature propagation, while experience replay [32, 36] is implemented
on such propagated image embeddings. Additionally, a contrastive loss is deployed to
explicitly enforce the current embeddings to approach the previous ones. To further eliminate
the domain and classes shifts among distinct tasks, we also use a supervised contrastive loss
to discriminatively make the image embeddings of the same class closer than those from
different classes. Notably, we adopt the online continual learning setting where the model can
only experience the data stream once [9, 27]. Extensive experiments are conducted on six
image classification tasks: Split MNIST, Permuted MNIST, Rotated MNIST, Split CIFAR-10,
Split CIFAR-100 and Split Tiny ImageNet. The results demonstrate the superiority of our
proposed method over a number of the state-of-the-art continual learning competitors. An
overview of the proposed method is illustrated in Figure 1.

2 Related Work

Continual learning Generally, the continual learning methods can be grouped into three
categories. First, regularization-based methods alleviate the issue of forgetting by either
regularizing the parameter changes in terms of the importance of parameters for old tasks
[1, 8, 14, 22, 39, 54], or aligning the current and previous function space by means of
knowledge distillation [26, 33] or KL divergence [3, 7, 31]. Second, rehearsal-based methods
reserve a memory set of past examples which can be directly enrolled in training as training
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data [2, 6, 11, 31, 34, 51] known as experience replay [32, 36] or indirectly used as gradient
constraints [9, 27, 45] or functional regularizations [33]. To update the memory set, [2]
selects the memory data to maximize the diversity of memory samples in terms of parameters
gradients. [4] constructs the buffer via cardinality-constrained bilevel optimization. [41]
contributes an Adversarial Shapley value scoring method to score memory samples. Instead
of directly storing past examples, [42, 47] train a generative model (GANs or VAEs) on
previous tasks and rehearsal pseudo-examples during learning new tasks, which is however
hard to perform well on complex datasets. [30] utilizes the conditional generative adversarial
networks (cGANs) to synthesize samples of previously seen tasks where the generator is
endowed with a sparse mask for the its weights. Additionally, rather than storing the past
examples, [15, 38, 53] reserves a set of gradient directions to alleviate the interference
with past tasks. Lastly, model-based methods [20, 25, 37, 40, 48, 52] modify the network
dynamically by fixing some units for previous tasks, adding extra units for new tasks or
merging a couple of units for similar tasks.

Contrastive Continual learning An increasing number of continual learning approaches
integrating with contrastive learning have been emerging in recent years. [16] hypothesizes
that the self-supervised pre-training could yield better representations for continual learning
and tests this hypothesis using two contrastive algorithms MoCo-V2 [13] and SwAV [5] and
one non-contrastive algorithm Barlow Twins [21]. [28] explicitly encourages samples of the
same class to be close together and those from different classes to be far apart by use of the
supervised contrastive loss. [6] claims the contrastively learned representations are more
robust and proposes a rehearsal-based continual learning algorithm based on that. [44] utilizes
the contrastive representations for continual domain adaptation. In this paper, we propose a
novel CL method to exploit rehearsal memories while regularizing feature representations in
a contrastive manner.

3 Continual Learning Setup
A continual learner experiences a stream of data triplets (xi,yi, ti) over time where ti ∈
{1, · · · ,T} is the task identifier. For each task t, the i.i.d. examples (x,y, t) are drawn from a
distribution Dt whereas the whole data stream is not independently and identically distributed
(non-i.i.d.); i.e. there are domain and class shifts among different tasks. The continual
learner is trained on one task at a time and not able to revisit the data of learned tasks aside
from a few pieces of data. The goal of the continual learner is to generally perform well
on all learned tasks, namely, rapidly adapting to new tasks and meanwhile preserving the
previously learned knowledge to a great extent. The particular challenge faced by continual
learning is the problem of catastrophic forgetting that means learning new tasks may hurt the
performance on past tasks due to the non-i.i.d stream of data. In addition to this challenge,
the continual learner is expected to fast acquire and adapt to the new tasks, hence a more
compelling setting named online continual learning is considered in some prior continual
learning works [9, 10, 27, 28] and will be adopted in this paper, where the continual learner
can only experience the data stream once. Specifically, the model receives a small batch of
data at a time and is only trained on the batch once. For rehearsal-based CL methods, a small
memory setM storing a few past examples is reserved and can be revisited multiple times
along the learning of new tasks. At the time of task t, by incorporating the memory setM
into the current task data Dt as the training set which is also known as experience replay
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[32, 36], the objective of the continual learner g is to minimize the following loss:

Ler = E(x,y)∼Dt∪Ml(g(x),y) (1)

where l is generally the cross-entropy loss function. It is worth noting that the experience
replay is a very simple and strong CL baseline [10] and outperforms significantly in terms
of either performance or efficiency the rehearsal-based methods that utilize the memory set
indirectly during training such as [27, 33]. Therefore, our proposed method is developed on
the basis of experience replay.

4 Methodology

Instead of enforcing the model outputs to be close to the previous ones in the output space by
means of knowledge distillation loss in some prior continual learning works [26, 31, 33], The
key idea of the proposed method is to preserve the representation space from drastic changes
by means of feature propagation and contrastive loss. Specifically, the current representation
space first absorbs some past knowledge by feature propagation from previous feature space.
The fusion of the two terms is motivated by the exponential moving average which can
move forward without forgetting the past. A contrastive regularization loss is then employed
to reinforce such effect by encouraging the current example embeddings to approach the
previous ones. As a complement, a supervised contrastive loss is leveraged to push the
examples of the same class to cluster tightly in the representation space whereas the examples’
embeddings from different classes are driven to be far apart. We will give an exposition in
following sections.

4.1 Experience Replay with Feature Propagation

Suppose the model consists of two components: the feature extractor ψ and the classifier
f . It is noted that for class incremental learning and domain incremental learning, there is
an only classifier for all tasks whereas for task incremental learning, there is one classifier
for each task. The feature extractor remains unique all the time. When the task t arrives,
we have two labelled datasets on hand: the current task data Dt and a small memory set
M of a few past examples. Before retraining the model on new data, we first copy the
feature extractor ψ to ψo and keep ψo fixed during the ensuing training. Afterwards, a feature
propagation procedure is carried out for the training data Dt ∪M in the representation space.
Concretely, the example embeddings derived from ψ are amended by fusing a weighted sum
of all example embeddings come from ψo. We denote the modified example embedding for
xi ∈ Dt ∪M by ψ̃(xi) defined as follows,

ψ̃(xi) = (1−w) ·ψ(xi)+w · ∑
x j∈Dt∪M

Ai jψo(x j) (2)

where w ∈ (0,1) is a trade-off parameter to balance the current and previous embedding
spaces. The propagation weight Ai j for examples xi and x j is set as:

Ai j =
exp(−d(ψ(xi),ψo(x j)) ·η)

∑x j′∈Dt∪M exp(−d(ψ(xi),ψo(x j′)) ·η)
(3)
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where d(·, ·) is the Euclidean distance and η is a temperature parameter. In consequence, the
amended experience replay loss is

Ler′ = E(x,y)∼Dt∪Ml( f (ψ̃(x)),y) (4)

where l is the cross-entropy loss function. In the practical training implementation, the x j
in Eq. 2 is sampled in a mini-batch level. At test time, we only use ψ and f to make the
inference simple and efficient. By being trained on the basis of the fused representation space,
the model is expected to absorb certain propagated global information from the previous
embedding space so as to avoid the significant forgetting issue.

4.2 Contrastive Representation Rehearsal
The contrastive learning shows the excellent capacity for representation learning by pushing
the ’similar’ examples to be close together and ’dissimilar’ examples to be far apart [12, 18, 50].
Inspired by such idea but distinct from some existing work such as [50] where the ’similar’
examples are formed from the representation space of the previous training iteration, our
model makes use of the example embeddings derived from the previous feature extractor ψo.
Explicitly, we enforce the example embeddings to stay near the previous corresponding ones
by a contrastive loss, so that to realize the aspiration of protecting the representation space
from dramatically changing after being retrained on new tasks. The proposed contrastive loss
is defined as follows,

Lcl =−Ex∼Dt∪M log
exp(−d(ψ(x),ψo(x)) · τ)

∑x j∈Dt∪M exp(−d(ψ(x),ψo(x j)) · τ)
(5)

where d(·, ·) is the Euclidean distance and τ is a temperature parameter. It is noted that
instead of merely applying the contrastive learning to memory data M which the model
has previously seen and learned, the whole training data Dt ∪M is deployed in this loss to
enhance the contrastive effect which we empirically found performs better.

Up to this point, we derive our proposed method which we named as contrastive continual
learning with feature propagation (CCL-FP). The overall objective during task t is

Lccl− f p = Ler′ +αLcl (6)

where α ∈ (0,1) is a trade-off parameter. By minimizing the above objective, the representa-
tion space is expected to stay steady throughout the training of all tasks, which is intuitively
adequate to cope with the task incremental learning where the model is equipped with task
specific classifiers or the class incremental learning in the case that the classes for different
tasks are disjoint. Nevertheless, for the domain incremental learning where all tasks share an
only classifier, it may be reliable to a limited degree.

4.3 Supervised Contrastive Replay
In the domain incremental learning, the classes for each task are identical whereas the domain
shifts among different tasks are relatively substantial. In this case, merely retaining the
representation space may not be a panacea, especially as all tasks share a unique classifier.
Out of such concern, we resort to supervised contrastive learning as a complement to our
overall loss function. Since the labels are on hand in our continual learning setup, the ‘similar’
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examples here can be formed by the data of the same class from Dt ∪M. Hence, a supervised
contrastive loss is defined as follows,

Lscl =−Exi∼Dt∪MExk∼Si log
exp(−d(ψ(xi),ψ(xk)) · τ)

∑x j∈(Dt∪M)\xi exp(−d(ψ(xi),ψ(x j)) · τ)
(7)

where d(·, ·) is the Euclidean distance and τ is a temperature parameter. Si is a set consisting
of the examples from Dt ∪M of the same class as xi but excluding xi itself. The model
thereby learns to make example embeddings of the same class which may come from both Dt
andM close together and those of different classes distinct, so that the domain shifts of the
same class among different tasks can be eliminated if there is any.

By integrating the supervised contrastive loss into the overall objective, we obtain our
intensified model named by CCL-FP+:

Lccl− f p+ = Ler′ +αLcl +βLscl (8)

where α and β are trade-off parameters in the range of (0,1). We solve it by using a batch-
wise gradient descent algorithm. The training algorithm for CCL-FP+ is provided in the
supplementary file, while the memory set M is updated along the training by reservoir
sampling [49].

5 Experiments

In this section, we compare our models CCL-FP and CCL-FP+ with several state-of-the-art
continual learning methods in an online manner on a variety of image datasets. We start by
reviewing the CL benchmarks and baselines and then report our experimental details as well
as the analysis of experimental results and ablation study. Below we present our experimental
setups, and report the results and analysis of our comparison experiments as well as ablation
studies.

5.1 Experimental Setting

Datasets We conducted extensive experiments on six commonly used image datasets in
the continual learning literature, of which four are applied in the class and task incremental
learning and the other two are in the domain incremental learning. Split MNIST [54] is
constructed by splitting the source MNIST dataset [24] into 5 disjoint binary-class subsets
in sequence (e.g. 0/1, 2/3, 4/5, 6/7, 8/9), of which each is considered as a separate task.
Permuted MNIST [22] is a variant of the MNIST dataset, where each task applies a certain
random pixel-level permutation to all the original images. Rotated MNIST [27] is another
variant of MNIST by rotating the original images with a certain random angel between 0
and 180 degrees in each task. For Permuted MNIST and Rotated MNIST, we consider 20
tasks and each task has 1000 images of 10 classes randomly sampled from the entire dataset.
Split CIFAR-10 [54] and Split CIFAR-100 [33] are constructed by splitting the CIFAR-10
and CIFAR-100 datasets [23] into 5 disjoint binary-class subsets and 20 disjoint 5-class
subsets, respectively. Similarly, Split Tiny ImageNet is a sequential split of the original Tiny
ImageNet dataset [43] with 10 tasks, each of which introduces 20 classes.
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Model
S-MNIST S-CIFAR-10 P-MNIST

Class-IL Task-IL Class-IL Task-IL Domain-IL
Joint 95.59±0.31 99.33±0.17 58.89±3.26 87.58±1.85 77.65±1.09
Finetune 19.62±0.12 95.25±1.66 17.00±1.20 64.02±3.53 58.68±0.46
ER-Reservior [10] 76.43±3.08 98.77±0.14 44.45±3.69 84.42±1.15 66.95±1.40
GEM [27] 80.79±1.47 97.68±0.32 18.66±0.91 77.74±2.60 62.96±1.14
A-GEM [9] 45.69±3.77 98.66±0.16 18.13±0.27 74.07±0.76 60.48±2.04
GSS [2] 71.19±1.25 98.45±0.51 36.19±4.38 81.47±1.74 58.91±0.96
FDR 81.03±2.23 98.66±0.52 19.51±1.04 74.29±3.49 68.41±2.72
HAL [11] 79.15±2.03 98.81±0.18 33.86±1.73 75.19±2.57 70.83±1.86
SCR [28] – – 40.91±1.07 76.72±2.28 –
CCL-FP (ours) 88.67±0.97 99.15±0.37 50.11±3.69 85.44±2.03 66.91±0.95
CCL-FP+ (ours) 89.16±1.14 99.14±0.05 51.74±2.41 86.33±1.47 69.22±1.07

Model
S-CIFAR-100 S-Tiny-ImageNet R-MNIST

Class-IL Task-IL Class-IL Task-IL Domain-IL
Joint 19.60±2.14 69.80±2.17 14.21±0.66 43.89±0.88 84.12±0.61
Finetune 3.58±0.13 39.55±4.42 4.77±0.23 26.93±1.59 67.64±2.17
ER-Reservoir [10] 9.74±0.98 63.05±0.82 7.21±0.29 36.75±0.79 79.77±0.86
GEM [27] 4.69±0.41 49.29±0.73 6.76±0.45 29.05±0.74 79.85±2.17
A-GEM [9] 3.67±0.10 46.88±1.81 5.43±0.11 29.67±0.91 73.64±3.68
GSS [2] 6.15±0.49 64.58±2.29 6.41±0.42 39.71±0.72 77.37±3.55
FDR 3.65±0.10 42.87±2.62 4.83±0.43 26.97±2.69 79.75±3.12
HAL [11] 6.31±0.71 47.88±2.76 3.85±0.32 21.70±1.12 78.65±1.57
SCR [28] 7.38±0.61 43.41±1.31 2.61±0.28 13.03±0.85 –
CCL-FP (ours) 13.64±1.04 65.19±0.65 10.52±0.28 39.44±0.48 80.68±1.74
CCL-FP+ (ours) 14.05±0.85 65.19±1.88 10.13±0.44 39.99±0.59 82.06±1.29

Table 1: The average accuracy ± standard deviation (%) by the end of training for baselines
and our models across 5 runs with different random seeds. The results for joint training, i.e.
the upper bound, and the best accuracies for CL models on each benchmark are marked in
bold. It is noted that ’–’ indicates experiments are unable to run because of compatibility
issues (e.g. SCR on MNIST dataset).

Baselines We compared the proposed methods CCL-FP and CCL-FP+ with several rehearsal-
based CL competitors in an online manner, including ER-Reservoir [10], GEM [27], A-
GEM [9], GSS [2], FDR [3], HAL [11] and SCR [28], as well as the upper bound and
lower bound. Joint trains the model with access to the data of all tasks at the same time,
which serves as an upper bound in terms of performance. Finetune is a lower bound for CL
baselines which simply trains the model using new task data without any effort to overcome
forgetting of past tasks. Both Joint and Finetune train the model with a single pass over the
data.

Implementation All baselines and our models adopt the same backbone architectures. We
use a fully-connect network with two hidden layers of 100 RELU units for the variants of
the MNIST dataset following [27, 34] and a ResNet18 for Split CIFAR-10, Split CIFAR-100
and Split Tiny ImageNet datasets following [31, 33]. All experiments are implemented
under the single epoch training with minibatch size of 10. For temperature parameters η

and τ , we set η ,τ = 0.1 for datasets in the class and task incremental learning, i.e. Split
MNIST, Split CIFAR-10, Split CIFAR-100 and Split Tiny ImageNet, and η = 0.1,τ = 1 for
datasets in domain incremental learning, i.e. Permuted MNIST and Rotated MNIST. The
hyperparameters w are selected from {0.1,0.3,0.5} and α,β are from {0.01,0.1,0.5,1}. The
buffer size |M| is set to be 200 across all experiments for all CL methods. It is noted that the
buffer of size 200 is fairly small and makes the rehearsal-based continual learning difficult
especially on Split CIFAR-100 and Split Tiny ImageNet datasets with 200 classes in total.
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(a) S-CIFAR-10 | Class-IL
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(b) S-CIFAR-10 | Task-IL
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(c) P-MNIST | Domain-IL
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(d) S-CIFAR-100 | Class-IL
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(e) S-CIFAR-100 | Task-IL
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(f) R-MNIST | Domain-IL

Figure 2: The evolution of average accuracy on test data of all seen tasks as new tasks are
learned. All results are obtained across 5 runs with different random seeds.
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Figure 3: Run time (training + inference) for baselines and our model on Split CIFAR-10 and
Split Tiny-ImageNet datasets.

For fair comparison, we use the same memory batch size for our proposed models and SCR
for representation learning. The impact of the memory batch size will be investigated in the
ablation study and provided in the supplementary material. Besides, we consider the average
accuracy to evaluate the overall performance of CL models and the definition can be found in
the supplementary material.

5.2 Experimental Results

The overall average accuracy of baselines and proposed models on all benchmarks is reported
in Table 1 and the evolution curves of average accuracy with respect to the number of tasks on
selected benchmarks are shown in Figure 2. It is worth noting that our models achieve the best
average accuracy on all datasets under different settings, except Permuted MNIST in which
HAL behaves better, whereas our models are more computational efficient as shown in Figure
3. In the class incremental learning setting, the model CCL-FP outperforms all compared
methods on corresponding benchmarks by great margins and CCL-FP+ further obtains slight
improvement except on S-Tiny-ImageNet. With a relatively small buffer of size 200, most
of rehearsal-based methods are barely satisfactory especially on the complicated datasets
such as S-CIFAR-100 and S-Tiny-ImageNet. The task incremental learning is generally
considered as the easiest continual learning scenario, where all baselines perform fairly well
on S-MNIST because of its simplicity. On three other datasets, some rehearsal-based methods
underperform in the setup of the small buffer size in the online setting, whereas our models
still gain outstanding performance for all corresponding benchmarks. It is noted that there is
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Buffer Model
CIFAR-10 CIFAR-100 R-MNIST

Class-IL Task-IL Class-IL Task-IL Domain-IL
0.2k ER-Res. 44.45 84.42 9.74 63.05 79.77

HAL 33.86 75.19 6.31 47.88 78.65
SCR 40.91 76.72 7.38 40.41 –
CCL-FP+ 51.74 86.33 14.05 65.19 82.06

0.5k ER-Res. 56.64 87.02 14.55 68.87 82.23
HAL 37.48 75.87 8.09 50.04 82.30
SCR 45.19 79.70 9.97 50.58 –
CCL-FP+ 57.03 87.37 19.44 69.03 83.10

1k ER-Res. 57.19 88.35 21.26 73.30 84.48
HAL 45.13 80.87 11.02 56.59 84.55
SCR 46.05 81.66 12.06 54.95 –
CCL-FP+ 60.29 88.87 23.99 74.27 84.95

5k ER-Res. 61.71 90.94 24.27 79.71 85.87
HAL 48.83 83.35 15.31 65.40 85.46
SCR 46.12 82.13 14.71 60.39 –
CCL-FP+ 63.84 91.03 27.38 80.46 86.96

Table 2: The average accuracy across 5 runs with different random seeds over a range of
buffer size of ER, HAL, SCR and CCL-FP+ on selected datasets.

S-MNIST S-CIFAR-10 R-MNIST
w 6=0 α 6= 0 β 6= 0 Class-IL Task-IL Class-IL Task-IL Domain-IL

76.43 98.77 44.45 84.42 79.77
X 83.48 98.72 50.45 85.23 79.38

X 78.04 99.13 44.82 84.63 79.89
X 77.37 98.67 46.41 85.55 81.01

X X 88.67 99.15 50.11 85.44 80.68
X X 82.95 98.73 50.36 84.73 81.78

X X 78.31 98.89 47.52 85.91 81.79
X X X 89.16 99.14 51.74 86.33 82.06

Table 3: The ablation study on selected datasets. All results are the average accuracy across 5
runs with different random seeds. The results in the first row is for ER-Reservoir.

no substantially difference between CCL-FP and CCL-FP+, suggesting that the supervised
contrastive loss is removable in this setting. For domain incremental learning we have two
benchmarks where CCL-FP+ is consistently better than CCL-FP, confirming the importance
of supervised contrastive loss for this setting.

Figure 3 gives the run time (training + inference) of our methods and baselines on S-
CIFAR-10 and S-Tiny-ImageNet datasets and we can observe that our model CCL-FP+ is
consistently computational efficient over different benchmarks. Additionally, we further study
the impact of buffer size in terms of average accuracy by evaluating ER, HAL, SCR and
CCL-FP+ on S-CIFAR-10, S-CIFAR-100 and R-MNIST datasets with a range of different
buffer size. The results are reported in Table 2, in which we can see that the average accuracy
improves with the increase of the buffer size and our model consistently outperforms ER,
HAL and SCR on three selected datasets for a wide range of buffer sizes. Besides, more
experimental results are provided in the supplementary materials.

5.3 Ablation Study
We conducted an ablation study to explore the impact of each component in our proposed
model on S-MNIST and S-CIFAR-10 and R-MNIST datasets with default buffer size of
200. The results are reported in Table 3. Our models have been empirically demonstrated
to be superior to the baseline ER with reservoir buffer on all benchmarks in Table 1 which
confirms the effectiveness of proposed components in our models. Here we will investigate
and analyze the specific effect of each component in different continual learning scenarios:
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w 6= 0 indicates the inclusion of the feature propagation component, α 6= 0 indicates the
inclusion of the contrastive representation rehearsal component Lcl , and β 6= 0 indicates the
inclusion of the supervised contrastive replay component Lscl .

In the class incremental learning, we observe that the feature propagation (w 6= 0) yields
remarkable performance gains compared to the other two components, which is approximately
7% gains on S-MNIST and 6% gains on S-CIFAR-10. The other two components contribute
in total about 5.5% gains on S-MNIST and 1.3% gains on S-CIFAR-10. In the task incre-
mental learning, there is no prominent gains from a certain component. By considering the
results in Table 1 we conclude that the supervised contrastive loss (β 6= 0) achieves marginal
performance gains so it is removable in this setting. In the domain incremental learning,
the supervised contrastive loss appears to be particularly important compared to two other
components, which produce about 1.3% performance gains on R-MNIST. In addition, as
shown in Table 1, embracing the supervised contrastive loss into the model can obtain about
2.3% performance gains on the P-MNIST benchmark.

6 Conclusion
In this paper, we proposes an effective and also computational efficient online continual
learning method applied to image recognition task. Instead of pure experience replay training,
we first re-represent the image embeddings by incorporating the information of previous
representation space via feature propagation and the model is then trained on the modified
image embeddings. Moreover, to largely preserve the representation space from dramatical
changes when experiencing new tasks, we encourage current image embeddings to approach
previous corresponding ones by a contrastive loss whereby the model is expected to keep a
competent memory of what has learned in the past and overcome the problem of catastrophic
forgetting after being exposed to new tasks. Furthermore, a supervised contrastive loss is
leveraged in the model training to explicitly encourage the images of the same class to cluster
closely in representation space and meanwhile push image embeddings from different classes
to be far apart. The extensive experiments demonstrated the superiority of our models in a
variety of image classification tasks.
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