

Overcoming Catastrophic Forgetting for Continual Learning via Feature Propagation

We propose a general feature-propagation based contrastive continual learning method in an online fashion:

- *feature propagation* to align the current and previous representation spaces;
- contrastive representation learning to bridge the domain shifts among distinct tasks;
- *supervised contrastive learning* to further mitigate the class-wise shifts in the feature space

The extensive experiments are implemented in multiple *image classification* tasks.

Problem Setting

- Consider a data stream of unknown distributions $\{D_1, \dots, D_T\}$.
- In the continual learning (CL), the model g is expected to learn the tasks sequentially - it can only learn one task at a time without forgetting what has learned in the past.
- In the online CL, the model can only experience the current dataset D_t once.
- For rehearsal-based CL, a small memory set *M* storing a few past examples is reserved and can be revisited multiple times along the learning of new tasks.
- Thus, the objective of the continual learner g at task t is to minimize the following loss:

$$\mathcal{L}_{er} = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_t \cup \mathcal{M}} l(g(\mathbf{x}), y)$$

which is also known as *experience replay*.

Methodology

Experience Replay with Feature Propagation

- Suppose the model consists of a feature extractor ψ and classifier f.
- Denote ψ_{o} is the model state before learning current task.
- Apply feature propagation procedure to training data $D_t \cup M$ in the feature space.

The example embeddings derived from ψ are amended by fusing a weighted sum of all example embeddings come from ψ_o :

$$\tilde{\boldsymbol{\psi}}(\mathbf{x}_i) = (1-w) \cdot \boldsymbol{\psi}(\mathbf{x}_i) + w \cdot$$

The propagation weight A_{ij} for examples x_i and x_j is set as:

$$\mathbf{v}_j = \frac{\exp(-d(\boldsymbol{\psi}(\mathbf{x}_i), \mathbf{y}))}{\sum_{\mathbf{x}_{j'} \in \mathcal{D}_t \cup \mathcal{M}} \exp(-d(\boldsymbol{\psi}(\mathbf{x}_i), \mathbf{y}))}$$

where $d(\cdot, \cdot)$ is the Euclidean distance.

- The fusion of the two terms is motivated by the exponential moving average which can move forward without forgetting the past.
- In consequence, the amended experience replay loss is

$$\mathcal{L}_{er'} = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_t \cup \mathcal{M}} l(f)$$

Contrastive Representation Rehearsal

- Enforce the example embeddings to stay near the previous corresponding ones;
- Protect the representation space from dramatically changing after being retrained on new tasks.
- The proposed contrastive loss is defined as follows,

$$\mathcal{L}_{cl} = -\mathbb{E}_{\mathbf{x} \sim \mathcal{D}_t \cup \mathcal{M}} \log \frac{\exp(1)}{\sum_{\mathbf{x}_j \in \mathcal{D}_t \cup \mathcal{M}}}$$

✤ Up to this point, the contrastive continual learning with feature propagation (CCL-FP) is define as:

 $\mathcal{L}_{ccl-fp} = \mathcal{L}_{er'} + \alpha \mathcal{L}_{cl}$

Supervised Contrastive Replay

- To further improve the feature space by a supervised contrastive loss.
- Try to eliminate the domain and class shifts between tasks.
- The supervised contrastive loss is defined as follows,

$$\mathcal{L}_{scl} = -\mathbb{E}_{\mathbf{x}_i \sim \mathcal{D}_t \cup \mathcal{M}} \mathbb{E}_{\mathbf{x}_k \sim \mathcal{S}_i} \log \frac{\exp}{\sum_{\mathbf{x}_j \in (\mathcal{D}_t \cup \mathcal{M})}}$$

• By integrating the supervised contrastive loss into the overall objective, we obtain our intensified model named by **CCL-FP+**:

 $\mathcal{L}_{ccl-fp+} = \mathcal{L}_{er'} + \alpha \mathcal{L}_{cl} + \beta \mathcal{L}_{scl}$

Xuejun Han¹, Yuhong Guo^{1,2}

¹Carleton University, Ottawa, Canada ²Canada CIFAR AI Chair, Amii, Canada

 $\sum_{\mathbf{x}_j \in \mathcal{D}_t \cup \mathcal{M}} A_{ij} \psi_o(\mathbf{x}_j)$

 $\psi_o(\mathbf{x}_j)) \cdot \boldsymbol{\eta}$ $\boldsymbol{\psi}(\mathbf{x}_i), \boldsymbol{\psi}_o(\mathbf{x}_{i'})) \cdot \boldsymbol{\eta}$

 $f(\tilde{\boldsymbol{\psi}}(\mathbf{x})), y)$

 $\exp(-d(\boldsymbol{\psi}(\mathbf{x}),\boldsymbol{\psi}_o(\mathbf{x}))\cdot\boldsymbol{\tau})$ $d_1 \exp(-d(\boldsymbol{\psi}(\mathbf{x}), \boldsymbol{\psi}_o(\mathbf{x}_j)) \cdot \boldsymbol{\tau}))$

 $\exp(-d(\boldsymbol{\psi}(\mathbf{x}_i),\boldsymbol{\psi}(\mathbf{x}_k))\cdot\boldsymbol{\tau}))$ $\mathcal{M}(\mathbf{x}_i) \in \exp(-d(\boldsymbol{\psi}(\mathbf{x}_i), \boldsymbol{\psi}(\mathbf{x}_j)) \cdot \boldsymbol{\tau})$

Experiments

Datasets

We compare our methods with several state-of-the-art continual learning methods on Split MNIST, Permuted MNIST, Rotated MNIST, Split CIFAR-10, Split CIFAR-100 and Split Tiny ImageNet.

Evaluation metric

We use *average accuracy* (1) to evaluate the overall performance of models on test data of all seen tasks, defined as follows,

$$ACC_t = \frac{1}{t} \sum_{k=1}^{t} R_{t,k}$$

which indicates the average accuracy on test data of task 1 to t after the model has learned continually up till task t.

Experimental Results

(d) S-CIFAR-100 | Class-IL (e) S-CIFAR-100 | Task-IL (f) R-MNIST | Domain-IL

Mode Joint Finetu ER-Re GEM A-GEI GSS FDR HAL SCR CCL-H CCL-

Mode

Joint Finetu ER-Re GEM A-GE GSS FDR HAL SCR CCL-F CCL-F

↑ *Table above:* The average accuracy ± standard deviation (%) by the end of training for baselines and our models across 5 runs with different random seeds. The results for joint training, i.e. the upper bound, and the best accuracies for CL models on each benchmark are marked in bold.

← *Figure Left:* The evolution curves of average accuracy on test data of all seen tasks as new tasks are learned, on all datasets in task-il, class-il and domain-il settings.

-1	S-MI	NIST	S-CIE	P-MNIST	
el	Class-IL	Task-IL	Class-IL	Task-IL	Domain-IL
	95.59 ± 0.31	99.33 ± 0.17	58.89±3.26	87.58 ± 1.85	77.65 ± 1.09
une	19.62 ± 0.12	95.25 ± 1.66	17.00 ± 1.20	64.02 ± 3.53	58.68 ± 0.46
Reservior	76.43 ± 3.08	98.77 ± 0.14	44.45 ± 3.69	84.42 ± 1.15	66.95 ± 1.40
[80.79 ± 1.47	97.68 ± 0.32	18.66 ± 0.91	77.74 ± 2.60	62.96 ± 1.14
EM	45.69 ± 3.77	98.66 ± 0.16	18.13 ± 0.27	74.07 ± 0.76	60.48 ± 2.04
	71.19 ± 1.25	98.45 ± 0.51	36.19 ± 4.38	81.47 ± 1.74	58.91 ± 0.96
	81.03 ± 2.23	98.66 ± 0.52	19.51 ± 1.04	74.29 ± 3.49	68.41 ± 2.72
,	79.15 ± 2.03	98.81 ± 0.18	33.86 ± 1.73	75.19 ± 2.57	70.83 ± 1.86
	_	-	40.91 ± 1.07	76.72 ± 2.28	_
-FP (ours)	88.67 ± 0.97	99.15 ± 0.37	50.11 ± 3.69	85.44 ± 2.03	66.91 ± 0.95
-FP+ (ours)	89 . 16 ±1.14	99.14 ± 0.05	51.74 ± 2.41	86.33 ± 1.47	69.22 ± 1.07
	S-CIFAR-100				
	S-CIF/	AR-100	S-Tiny-I	mageNet	R-MNIST
el			S-Tiny-I		R-MNIST
el	S-CIFA Class-IL	AR-100 Task-IL	S-Tiny-I Class-IL	mageNet Task-IL	R-MNIST Domain-IL
el					
el une	Class-IL	Task-IL	Class-IL	Task-IL	Domain-IL
	Class-IL 19.60 ± 2.14	Task-IL 69.80±2.17	Class-IL 14.21±0.66	Task-IL 43.89±0.88	Domain-IL 84.12±0.61
une	Class-IL 19.60 \pm 2.14 3.58 \pm 0.13	Task-IL 69.80 ± 2.17 39.55 ± 4.42	Class-IL 14.21 \pm 0.66 4.77 \pm 0.23	Task-IL 43.89 ± 0.88 26.93 ± 1.59	Domain-IL 84.12±0.61 67.64±2.17
une	Class-IL 19.60 ± 2.14 3.58 ± 0.13 9.74 ± 0.98	Task-IL 69.80 ± 2.17 39.55 ± 4.42 63.05 ± 0.82	Class-IL 14.21 \pm 0.66 4.77 \pm 0.23 7.21 \pm 0.29	Task-IL 43.89 \pm 0.88 26.93 \pm 1.59 36.75 \pm 0.79	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
une Reservoir	Class-IL 19.60 ± 2.14 3.58 ± 0.13 9.74 ± 0.98 4.69 ± 0.41	Task-IL 69.80 ± 2.17 39.55 ± 4.42 63.05 ± 0.82 49.29 ± 0.73	Class-IL 14.21 \pm 0.66 4.77 \pm 0.23 7.21 \pm 0.29 6.76 \pm 0.45	Task-IL 43.89 \pm 0.88 26.93 \pm 1.59 36.75 \pm 0.79 29.05 \pm 0.74	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
une Reservoir	Class-IL 19.60 ± 2.14 3.58 ± 0.13 9.74 ± 0.98 4.69 ± 0.41 3.67 ± 0.10	Task-IL 69.80 ± 2.17 39.55 ± 4.42 63.05 ± 0.82 49.29 ± 0.73 46.88 ± 1.81	Class-IL 14.21 \pm 0.66 4.77 \pm 0.23 7.21 \pm 0.29 6.76 \pm 0.45 5.43 \pm 0.11	Task-IL 43.89 \pm 0.88 26.93 \pm 1.59 36.75 \pm 0.79 29.05 \pm 0.74 29.67 \pm 0.91	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
une Reservoir	Class-IL 19.60 \pm 2.14 3.58 ± 0.13 9.74 ± 0.98 4.69 ± 0.41 3.67 ± 0.10 6.15 ± 0.49	Task-IL 69.80 ± 2.17 39.55 ± 4.42 63.05 ± 0.82 49.29 ± 0.73 46.88 ± 1.81 64.58 ± 2.29	Class-IL 14.21 ± 0.66 4.77 ± 0.23 7.21 ± 0.29 6.76 ± 0.45 5.43 ± 0.11 6.41 ± 0.42	Task-IL 43.89 \pm 0.88 26.93 \pm 1.59 36.75 \pm 0.79 29.05 \pm 0.74 29.67 \pm 0.91 39.71 \pm 0.72	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
une Reservoir	Class-IL 19.60 \pm 2.14 3.58 \pm 0.139.74 \pm 0.984.69 \pm 0.413.67 \pm 0.106.15 \pm 0.493.65 \pm 0.10	Task-IL 69.80 ± 2.17 39.55 ± 4.42 63.05 ± 0.82 49.29 ± 0.73 46.88 ± 1.81 64.58 ± 2.29 42.87 ± 2.62	Class-IL 14.21 \pm 0.66 4.77 \pm 0.23 7.21 \pm 0.29 6.76 \pm 0.45 5.43 \pm 0.11 6.41 \pm 0.42 4.83 \pm 0.43	Task-IL 43.89 \pm 0.88 26.93 \pm 1.5936.75 \pm 0.7929.05 \pm 0.7429.67 \pm 0.9139.71 \pm 0.7226.97 \pm 2.69	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
une Reservoir	Class-IL 19.60 \pm 2.14 3.58 \pm 0.139.74 \pm 0.984.69 \pm 0.413.67 \pm 0.106.15 \pm 0.493.65 \pm 0.106.31 \pm 0.71	Task-IL 69.80 \pm 2.17 39.55 \pm 4.4263.05 \pm 0.8249.29 \pm 0.7346.88 \pm 1.8164.58 \pm 2.2942.87 \pm 2.6247.88 \pm 2.76	Class-IL 14.21 \pm 0.66 4.77 \pm 0.23 7.21 \pm 0.29 6.76 \pm 0.45 5.43 \pm 0.11 6.41 \pm 0.42 4.83 \pm 0.43 3.85 \pm 0.32	Task-IL 43.89 \pm 0.88 26.93 \pm 1.5936.75 \pm 0.7929.05 \pm 0.7429.67 \pm 0.9139.71 \pm 0.7226.97 \pm 2.6921.70 \pm 1.12	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

				IICO				
			S-MNIST		S-CIFAR-10		R-MNIST	
$\neq 0$	$\alpha \neq 0$	eta eq 0	Class-IL	Task-IL	Class-IL	Task-IL	Domain-IL	
			76.43	98.77	44.45	84.42	79.77	
(83.48	98.72	50.45	85.23	79.38	
	\checkmark		78.04	99.13	44.82	84.63	79.89	
		\checkmark	77.37	98.67	46.41	85.55	81.01	
(\checkmark		88.67	99.15	50.11	85.44	80.68	
(\checkmark	82.95	98.73	50.36	84.73	81.78	
	\checkmark	\checkmark	78.31	98.89	47.52	85.91	81.79	
(\checkmark	\checkmark	89.16	99.14	51.74	86.33	82.06	

1 *Table above:* The The ablation study on S-MNIST, S-CIFAR-10 and R-MNIST datasets. All results are the average accuracy across 5 runs with different random seeds.