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We propose a general feature-propagation based 
contrastive continual learning method in an online 
fashion:
• feature propagation to align the current and 

previous representation spaces;
• contrastive representation learning to bridge the 

domain shifts among distinct tasks;
• supervised contrastive learning to further mitigate 

the class-wise shifts in the feature space
The extensive experiments are implemented in 
multiple image classification tasks.
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Overcoming Catastrophic Forgetting for Continual Learning 
via Feature Propagation 

Methodology

Experience Replay with Feature Propagation

Experiments

We compare our methods with several state-of-the-art continual 
learning methods on Split MNIST, Permuted MNIST, Rotated 
MNIST, Split CIFAR-10, Split CIFAR-100 and Split Tiny ImageNet.

We use average accuracy (↑) to evaluate the overall performance of 
models on test data of all seen tasks, defined as follows,
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which indicates the average accuracy on test data of task 1 to 𝑡 after 
the model has learned continually up till task 𝑡.

Evaluation metric

Datasets

Experimental Results
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Model

S-MNIST S-CIFAR-10 P-MNIST

Class-IL Task-IL Class-IL Task-IL Domain-IL

Joint 95.59±0.31 99.33±0.17 58.89±3.26 87.58±1.85 77.65±1.09

Finetune 19.62±0.12 95.25±1.66 17.00±1.20 64.02±3.53 58.68±0.46

ER-Reservior 76.43±3.08 98.77±0.14 44.45±3.69 84.42±1.15 66.95±1.40
GEM 80.79±1.47 97.68±0.32 18.66±0.91 77.74±2.60 62.96±1.14
A-GEM 45.69±3.77 98.66±0.16 18.13±0.27 74.07±0.76 60.48±2.04
GSS 71.19±1.25 98.45±0.51 36.19±4.38 81.47±1.74 58.91±0.96
FDR 81.03±2.23 98.66±0.52 19.51±1.04 74.29±3.49 68.41±2.72
HAL 79.15±2.03 98.81±0.18 33.86±1.73 75.19±2.57 70.83±1.86

SCR – – 40.91±1.07 76.72±2.28 –

CCL-FP (ours) 88.67±0.97 99.15±0.37 50.11±3.69 85.44±2.03 66.91±0.95
CCL-FP+ (ours) 89.16±1.14 99.14±0.05 51.74±2.41 86.33±1.47 69.22±1.07

Model

S-CIFAR-100 S-Tiny-ImageNet R-MNIST

Class-IL Task-IL Class-IL Task-IL Domain-IL

Joint 19.60±2.14 69.80±2.17 14.21±0.66 43.89±0.88 84.12±0.61

Finetune 3.58±0.13 39.55±4.42 4.77±0.23 26.93±1.59 67.64±2.17

ER-Reservoir 9.74±0.98 63.05±0.82 7.21±0.29 36.75±0.79 79.77±0.86
GEM 4.69±0.41 49.29±0.73 6.76±0.45 29.05±0.74 79.85±2.17
A-GEM 3.67±0.10 46.88±1.81 5.43±0.11 29.67±0.91 73.64±3.68
GSS 6.15±0.49 64.58±2.29 6.41±0.42 39.71±0.72 77.37±3.55
FDR 3.65±0.10 42.87±2.62 4.83±0.43 26.97±2.69 79.75±3.12
HAL 6.31±0.71 47.88±2.76 3.85±0.32 21.70±1.12 78.65±1.57
SCR 7.38±0.61 43.41±1.31 2.61±0.28 13.03±0.85 –

CCL-FP (ours) 13.64±1.04 65.19±0.65 10.52±0.28 39.44±0.48 80.68±1.74
CCL-FP+ (ours) 14.05±0.85 65.19±1.88 10.13±0.44 39.99±0.59 82.06±1.29

Table 1: The average accuracy ± standard deviation (%) by the end of training for baselines
and our models across 5 runs with different random seeds. The results for joint training, i.e.
the upper bound, and the best accuracies for CL models on each benchmark are marked in
bold. It is noted that ’–’ indicates experiments are unable to run because of compatibility
issues (e.g. SCR on MNIST dataset).

Baselines We compared the proposed methods CCL-FP and CCL-FP+ with several rehearsal-
based CL competitors in an online manner, including ER-Reservoir [10], GEM [27], A-

GEM [9], GSS [2], FDR [3], HAL [11] and SCR [28], as well as the upper bound and
lower bound. Joint trains the model with access to the data of all tasks at the same time,
which serves as an upper bound in terms of performance. Finetune is a lower bound for CL
baselines which simply trains the model using new task data without any effort to overcome
forgetting of past tasks. Both Joint and Finetune train the model with a single pass over the
data.

Implementation All baselines and our models adopt the same backbone architectures. We
use a fully-connect network with two hidden layers of 100 RELU units for the variants of
the MNIST dataset following [27, 34] and a ResNet18 for Split CIFAR-10, Split CIFAR-100
and Split Tiny ImageNet datasets following [31, 33]. All experiments are implemented
under the single epoch training with minibatch size of 10. For temperature parameters h
and t , we set h ,t = 0.1 for datasets in the class and task incremental learning, i.e. Split

Contrastive Representation Rehearsal 

Supervised Contrastive Replay 

• Consider a data stream of unknown distributions 𝐷$, … , 𝐷& .

• In the continual learning (CL), the model 𝑔 is expected to 
learn the tasks sequentially - it can only learn one task at a 
time without forgetting what has learned in the past.

• In the online CL, the model can only experience the current 
dataset 𝐷! once.

• For rehearsal-based CL, a small memory set 𝑀 storing a 
few past examples is reserved and can be revisited multiple 
times along the learning of new tasks.

• Thus, the objective of the continual learner 𝑔 at task 𝑡 is to 
minimize the following loss: 

which is also known as experience replay.
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[32, 36], the objective of the continual learner g is to minimize the following loss:

Ler = E(x,y)⇠Dt[Ml(g(x),y) (1)

where l is generally the cross-entropy loss function. It is worth noting that the experience
replay is a very simple and strong CL baseline [10] and outperforms significantly in terms
of either performance or efficiency the rehearsal-based methods that utilize the memory set
indirectly during training such as [27, 33]. Therefore, our proposed method is developed on
the basis of experience replay.

4 Methodology

Instead of enforcing the model outputs to be close to the previous ones in the output space by
means of knowledge distillation loss in some prior continual learning works [26, 31, 33], The
key idea of the proposed method is to preserve the representation space from drastic changes
by means of feature propagation and contrastive loss. Specifically, the current representation
space first absorbs some past knowledge by feature propagation from previous feature space.
The fusion of the two terms is motivated by the exponential moving average which can
move forward without forgetting the past. A contrastive regularization loss is then employed
to reinforce such effect by encouraging the current example embeddings to approach the
previous ones. As a complement, a supervised contrastive loss is leveraged to push the
examples of the same class to cluster tightly in the representation space whereas the examples’
embeddings from different classes are driven to be far apart. We will give an exposition in
following sections.

4.1 Experience Replay with Feature Propagation

Suppose the model consists of two components: the feature extractor y and the classifier
f . It is noted that for class incremental learning and domain incremental learning, there is
an only classifier for all tasks whereas for task incremental learning, there is one classifier
for each task. The feature extractor remains unique all the time. When the task t arrives,
we have two labelled datasets on hand: the current task data Dt and a small memory set
M of a few past examples. Before retraining the model on new data, we first copy the
feature extractor y to yo and keep yo fixed during the ensuing training. Afterwards, a feature
propagation procedure is carried out for the training data Dt [M in the representation space.
Concretely, the example embeddings derived from y are amended by fusing a weighted sum
of all example embeddings come from yo. We denote the modified example embedding for
xi 2Dt [M by ỹ(xi) defined as follows,

ỹ(xi) = (1�w) ·y(xi)+w · Â
x j2Dt[M

Ai jyo(x j) (2)

where w 2 (0,1) is a trade-off parameter to balance the current and previous embedding
spaces. The propagation weight Ai j for examples xi and x j is set as:

Ai j =
exp(�d(y(xi),yo(x j)) ·h)

Âx
j0 2Dt[M exp(�d(y(xi),yo(x j0)) ·h)

(3)

• Suppose the model consists of a feature extractor 𝜓 and 
classifier 𝑓.

• Denote 𝜓' is the model state before learning current task.
• Apply feature propagation procedure to training data 𝐷! ∪𝑀

in the feature space.

• The example embeddings derived from 𝜓 are amended by fusing a 
weighted sum of all example embeddings come from 𝜓':

• The propagation weight 𝐴() for examples 𝑥( and 𝑥) is set as: 

where 𝑑(5,5) is the Euclidean distance.

• The fusion of the two terms is motivated by the exponential moving 
average which can move forward without forgetting the past. 

• In consequence, the amended experience replay loss is
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where d(·, ·) is the Euclidean distance and h is a temperature parameter. In consequence, the
amended experience replay loss is

Ler0 = E(x,y)⇠Dt[Ml( f (ỹ(x)),y) (4)

where l is the cross-entropy loss function. In the practical training implementation, the x j

in Eq. 2 is sampled in a mini-batch level. At test time, we only use y and f to make the
inference simple and efficient. By being trained on the basis of the fused representation space,
the model is expected to absorb certain propagated global information from the previous
embedding space so as to avoid the significant forgetting issue.

4.2 Contrastive Representation Rehearsal

The contrastive learning shows the excellent capacity for representation learning by pushing
the ’similar’ examples to be close together and ’dissimilar’ examples to be far apart [12, 18, 50].
Inspired by such idea but distinct from some existing work such as [50] where the ’similar’
examples are formed from the representation space of the previous training iteration, our
model makes use of the example embeddings derived from the previous feature extractor yo.
Explicitly, we enforce the example embeddings to stay near the previous corresponding ones
by a contrastive loss, so that to realize the aspiration of protecting the representation space
from dramatically changing after being retrained on new tasks. The proposed contrastive loss
is defined as follows,

Lcl =�Ex⇠Dt[M log
exp(�d(y(x),yo(x)) · t)

Âx j2Dt[M exp(�d(y(x),yo(x j)) · t)
(5)

where d(·, ·) is the Euclidean distance and t is a temperature parameter. It is noted that
instead of merely applying the contrastive learning to memory data M which the model
has previously seen and learned, the whole training data Dt [M is deployed in this loss to
enhance the contrastive effect which we empirically found performs better.

Up to this point, we derive our proposed method which we named as contrastive continual

learning with feature propagation (CCL-FP). The overall objective during task t is

Lccl� f p = Ler0 +aLcl (6)

where a 2 (0,1) is a trade-off parameter. By minimizing the above objective, the representa-
tion space is expected to stay steady throughout the training of all tasks, which is intuitively
adequate to cope with the task incremental learning where the model is equipped with task
specific classifiers or the class incremental learning in the case that the classes for different
tasks are disjoint. Nevertheless, for the domain incremental learning where all tasks share an
only classifier, it may be reliable to a limited degree.

4.3 Supervised Contrastive Replay

In the domain incremental learning, the classes for each task are identical whereas the domain
shifts among different tasks are relatively substantial. In this case, merely retaining the
representation space may not be a panacea, especially as all tasks share a unique classifier.
Out of such concern, we resort to supervised contrastive learning as a complement to our
overall loss function. Since the labels are on hand in our continual learning setup, the ‘similar’

• Enforce the example embeddings to stay near the previous 
corresponding ones;

• Protect the representation space from dramatically changing 
after being retrained on new tasks. 

• The proposed contrastive loss is defined as follows, 

HAN, GUO: OVERCOMING CF FOR CL VIA FEATURE PROPAGATION 5

where d(·, ·) is the Euclidean distance and h is a temperature parameter. In consequence, the
amended experience replay loss is

Ler0 = E(x,y)⇠Dt[Ml( f (ỹ(x)),y) (4)
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v Up to this point, the contrastive continual learning with feature 
propagation (CCL-FP) is define as: 
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• To further improve the feature space by a supervised 
contrastive loss.

• Try to eliminate the domain and class shifts between tasks.
• The supervised contrastive loss is defined as follows,
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examples here can be formed by the data of the same class from Dt [M. Hence, a supervised
contrastive loss is defined as follows,

Lscl =�Exi⇠Dt[MExk⇠Si
log

exp(�d(y(xi),y(xk)) · t)
Âx j2(Dt[M)\xi

exp(�d(y(xi),y(x j)) · t)
(7)

where d(·, ·) is the Euclidean distance and t is a temperature parameter. Si is a set consisting
of the examples from Dt [M of the same class as xi but excluding xi itself. The model
thereby learns to make example embeddings of the same class which may come from both Dt

and M close together and those of different classes distinct, so that the domain shifts of the
same class among different tasks can be eliminated if there is any.

By integrating the supervised contrastive loss into the overall objective, we obtain our
intensified model named by CCL-FP+:

Lccl� f p+ = Ler0 +aLcl +bLscl (8)

where a and b are trade-off parameters in the range of (0,1). We solve it by using a batch-
wise gradient descent algorithm. The training algorithm for CCL-FP+ is provided in the
supplementary file, while the memory set M is updated along the training by reservoir
sampling [49].

5 Experiments

In this section, we compare our models CCL-FP and CCL-FP+ with several state-of-the-art
continual learning methods in an online manner on a variety of image datasets. We start by
reviewing the CL benchmarks and baselines and then report our experimental details as well
as the analysis of experimental results and ablation study. Below we present our experimental
setups, and report the results and analysis of our comparison experiments as well as ablation
studies.

5.1 Experimental Setting

Datasets We conducted extensive experiments on six commonly used image datasets in
the continual learning literature, of which four are applied in the class and task incremental
learning and the other two are in the domain incremental learning. Split MNIST [54] is
constructed by splitting the source MNIST dataset [24] into 5 disjoint binary-class subsets
in sequence (e.g. 0/1, 2/3, 4/5, 6/7, 8/9), of which each is considered as a separate task.
Permuted MNIST [22] is a variant of the MNIST dataset, where each task applies a certain
random pixel-level permutation to all the original images. Rotated MNIST [27] is another
variant of MNIST by rotating the original images with a certain random angel between 0
and 180 degrees in each task. For Permuted MNIST and Rotated MNIST, we consider 20
tasks and each task has 1000 images of 10 classes randomly sampled from the entire dataset.
Split CIFAR-10 [54] and Split CIFAR-100 [33] are constructed by splitting the CIFAR-10
and CIFAR-100 datasets [23] into 5 disjoint binary-class subsets and 20 disjoint 5-class
subsets, respectively. Similarly, Split Tiny ImageNet is a sequential split of the original Tiny
ImageNet dataset [43] with 10 tasks, each of which introduces 20 classes.

v By integrating the supervised contrastive loss into the overall 
objective, we obtain our intensified model named by CCL-FP+: 
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Permuted MNIST [22] is a variant of the MNIST dataset, where each task applies a certain
random pixel-level permutation to all the original images. Rotated MNIST [27] is another
variant of MNIST by rotating the original images with a certain random angel between 0
and 180 degrees in each task. For Permuted MNIST and Rotated MNIST, we consider 20
tasks and each task has 1000 images of 10 classes randomly sampled from the entire dataset.
Split CIFAR-10 [54] and Split CIFAR-100 [33] are constructed by splitting the CIFAR-10
and CIFAR-100 datasets [23] into 5 disjoint binary-class subsets and 20 disjoint 5-class
subsets, respectively. Similarly, Split Tiny ImageNet is a sequential split of the original Tiny
ImageNet dataset [43] with 10 tasks, each of which introduces 20 classes.

↑ Table above:  The average accuracy ± standard deviation (%) by 
the end of training for baselines and our models across 5 runs with 
different random seeds. The results for joint training, i.e. the upper 
bound, and the best accuracies for CL models on each benchmark 
are marked in bold. 

↑ Table above: The The ablation study on S-MNIST, S-CIFAR-10 
and R-MNIST  datasets. All results are the average accuracy 
across 5 runs with different random seeds. 

← Figure Left: The evolution curves of average accuracy on test 
data of all seen tasks as new tasks are learned, on all datasets in 
task-il, class-il and domain-il settings. 
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Buffer Model
CIFAR-10 CIFAR-100 R-MNIST

Class-IL Task-IL Class-IL Task-IL Domain-IL
0.2k ER-Res. 44.45 84.42 9.74 63.05 79.77

HAL 33.86 75.19 6.31 47.88 78.65
SCR 40.91 76.72 7.38 40.41 –
CCL-FP+ 51.74 86.33 14.05 65.19 82.06

0.5k ER-Res. 56.64 87.02 14.55 68.87 82.23
HAL 37.48 75.87 8.09 50.04 82.30
SCR 45.19 79.70 9.97 50.58 –
CCL-FP+ 57.03 87.37 19.44 69.03 83.10

1k ER-Res. 57.19 88.35 21.26 73.30 84.48
HAL 45.13 80.87 11.02 56.59 84.55
SCR 46.05 81.66 12.06 54.95 –
CCL-FP+ 60.29 88.87 23.99 74.27 84.95

5k ER-Res. 61.71 90.94 24.27 79.71 85.87
HAL 48.83 83.35 15.31 65.40 85.46
SCR 46.12 82.13 14.71 60.39 –
CCL-FP+ 63.84 91.03 27.38 80.46 86.96

Table 2: The average accuracy across 5 runs with different random seeds over a range of
buffer size of ER, HAL, SCR and CCL-FP+ on selected datasets.

S-MNIST S-CIFAR-10 R-MNIST

w 6=0 a 6= 0 b 6= 0 Class-IL Task-IL Class-IL Task-IL Domain-IL

76.43 98.77 44.45 84.42 79.77
X 83.48 98.72 50.45 85.23 79.38

X 78.04 99.13 44.82 84.63 79.89
X 77.37 98.67 46.41 85.55 81.01

X X 88.67 99.15 50.11 85.44 80.68
X X 82.95 98.73 50.36 84.73 81.78

X X 78.31 98.89 47.52 85.91 81.79
X X X 89.16 99.14 51.74 86.33 82.06

Table 3: The ablation study on selected datasets. All results are the average accuracy across 5
runs with different random seeds. The results in the first row is for ER-Reservoir.

no substantially difference between CCL-FP and CCL-FP+, suggesting that the supervised
contrastive loss is removable in this setting. For domain incremental learning we have two
benchmarks where CCL-FP+ is consistently better than CCL-FP, confirming the importance
of supervised contrastive loss for this setting.

Figure 3 gives the run time (training + inference) of our methods and baselines on S-
CIFAR-10 and S-Tiny-ImageNet datasets and we can observe that our model CCL-FP+ is
consistently computational efficient over different benchmarks. Additionally, we further study
the impact of buffer size in terms of average accuracy by evaluating ER, HAL, SCR and
CCL-FP+ on S-CIFAR-10, S-CIFAR-100 and R-MNIST datasets with a range of different
buffer size. The results are reported in Table 2, in which we can see that the average accuracy
improves with the increase of the buffer size and our model consistently outperforms ER,
HAL and SCR on three selected datasets for a wide range of buffer sizes. Besides, more
experimental results are provided in the supplementary materials.

5.3 Ablation Study

We conducted an ablation study to explore the impact of each component in our proposed
model on S-MNIST and S-CIFAR-10 and R-MNIST datasets with default buffer size of
200. The results are reported in Table 3. Our models have been empirically demonstrated
to be superior to the baseline ER with reservoir buffer on all benchmarks in Table 1 which
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(a) S-CIFAR-10 | Class-IL (b) S-CIFAR-10 | Task-IL (c) P-MNIST | Domain-IL

(d) S-CIFAR-100 | Class-IL (e) S-CIFAR-100 | Task-IL (f) R-MNIST | Domain-IL

Figure 2: The evolution of average accuracy on test data of all seen tasks as new tasks are
learned. All results are obtained across 5 runs with different random seeds.

Figure 3: Run time (training + inference) for baselines and our model on Split CIFAR-10 and
Split Tiny-ImageNet datasets.

For fair comparison, we use the same memory batch size for our proposed models and SCR
for representation learning. The impact of the memory batch size will be investigated in the
ablation study and provided in the supplementary material. Besides, we consider the average
accuracy to evaluate the overall performance of CL models and the definition can be found in
the supplementary material.

5.2 Experimental Results

The overall average accuracy of baselines and proposed models on all benchmarks is reported
in Table 1 and the evolution curves of average accuracy with respect to the number of tasks on
selected benchmarks are shown in Figure 2. It is worth noting that our models achieve the best
average accuracy on all datasets under different settings, except Permuted MNIST in which
HAL behaves better, whereas our models are more computational efficient as shown in Figure
3. In the class incremental learning setting, the model CCL-FP outperforms all compared
methods on corresponding benchmarks by great margins and CCL-FP+ further obtains slight
improvement except on S-Tiny-ImageNet. With a relatively small buffer of size 200, most
of rehearsal-based methods are barely satisfactory especially on the complicated datasets
such as S-CIFAR-100 and S-Tiny-ImageNet. The task incremental learning is generally
considered as the easiest continual learning scenario, where all baselines perform fairly well
on S-MNIST because of its simplicity. On three other datasets, some rehearsal-based methods
underperform in the setup of the small buffer size in the online setting, whereas our models
still gain outstanding performance for all corresponding benchmarks. It is noted that there is

Ø An overview of the proposed method:
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