Overcoming Catastrophic Forgetting for Continual Learning
via Feature Propagation
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In the continual learning (CL), the model g is expected to

» Protect the representation space from dramatically changing

Evaluation metric

learn the tasks sequentially - it can only learn one task at a after being retrained on new tasks.

time without forgetting what has learned in the past. T Table above: The average accuracy + standard deviation (%) by

the end of training for baselines and our models across 5 runs with
different random seeds. The results for joint training, i.e. the upper
bound, and the best accuracies for CL models on each benchmark
are marked in bold.

We use average accuracy (1) to evaluate the overall performance of
) models on test data of all seen tasks, defined as follows,
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which indicates the average accuracgl on test data of task 1 to t after
the model has learned continually up till task t.

« The proposed contrastive loss is defined as follows,
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» In the online CL, the model can only experience the current

dataset D, once. L=

_]EXNDtUM log
ACC,

* Forrehearsal-based CL, a small memory set M storing a

few past examples is reserved and can be revisited multiple
times along the learning of new tasks.

s Up to this point, the contrastive continual learning with feature
propagation (CCL-FP) is define as:
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« Thus, the objective of the continual learner g at task t is to Leci—fp = Loy + 0L Experimental Results
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« The supervised contrastive loss is defined as follows,
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Experience Replay with Feature Propagation

T Table above: The The ablation study on S-MNIST, S-CIFAR-10
and R-MNIST datasets. All results are the average accuracy
across 5 runs with different random seeds.
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classifier f.
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% By integrating the supervised contrastive loss into the overall

« Denote 9, is the model state before learning current task. AHte _ _ ©
objective, we obtain our intensified model named by CCL-FP+:

Avg Accuracy (%)

« Figure Left: The evolution curves of average accuracy on test
data of all seen tasks as new tasks are learned, on all datasets in
task-il, class-il and domain-il settings.
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» Apply feature propagation procedure to training data D, U M

in the feature space. Leci—fpr = Loy + 0L + B L (d) S-CIFAR-100 | Class-IL (e) S-CIFAR-100 | Task-IL ~ (f) R-MNIST | Domain-IL



