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1 Dataset Statistics
Table 1 summarizes the statistics of all benchmarks.

Dataset # tasks # classes per task # images per task input size
S-MNIST 5 2 12000 1×28×28
P-MNIST 20 10 1000 1×28×28
R-MNIST 20 10 1000 1×28×28
S-CIFAR-10 5 2 10000 3×32×32
S-CIFAR-100 20 5 2500 3×32×32
S-Tiny-ImageNet 10 20 10000 3×64×64

Table 1: The Statistics of datasets.

2 Metrics
For a principled evaluation, we consider two metrics, average accuracy (↑) and forgetting
measure (↓) [1], to evaluate the performance of models on test data of all tasks. The average
accuracy evaluates the overall performance for all seen tasks, while the forgetting measure
reflects the accuracy drops on previous tasks after the model is trained on new tasks. The
large forgetting values signify the model has less stability when encountering new tasks.

Suppose we have a sequence of tasks with identifier t ∈ {1, · · · ,T} and denote Ri, j the
classification accuracy of the model on test data of task j after learning the training data up
till task i. The two metrics are defined as follows,

2.1 Average Accuracy (↑)

ACCt =
1
t

t

∑
k=1

Rt,k (1)

The above definition indicates the average accuracy on test data of task 1 to t after the model
has learned continually up till task t, the values of which are used to draw the accuracy
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Model
S-MNIST S-CIFAR-10 S-CIFAR-100 R-MNIST P-MNIST

Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL
Finetune 99.29 4.81 80.09 21.32 62.84 26.13 19.63 22.25
ER-Res. 28.21 0.68 49.37 3.15 60.45 10.83 8.77 15.74
GEM 21.38 1.24 80.17 6.88 58.74 14.33 8.82 18.57
A-GEM 66.72 0.95 82.76 13.49 62.61 17.49 15.61 21.27
GSS 34.89 1.12 59.12 7.13 61.72 8.00 10.84 23.44
FDG 24.10 0.82 78.61 12.19 64.39 23.22 8.04 11.61
HAL 24.77 0.61 39.29 6.58 43.11 11.27 8.97 11.25
SCR – – 31.23 5.91 43.27 8.17 – –
CCL-FP 8.43 0.22 34.11 2.63 41.86 8.92 7.69 15.12
CCL-FP+ 8.45 0.18 34.41 2.05 41.61 7.95 6.48 14.88

Table 2: The average forgetting (%) for baselines and our models across 5 runs with different
random seeds on selected datasets. The best results on each benchmark are marked in bold.

Setup
S-MNIST S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P-MNIST R-MNIST

Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL
Joint-online 95.59 99.33 58.89 87.58 19.60 69.80 14.21 43.89 77.65 84.12
Joint-offline 97.64 99.73 91.58 98.17 70.87 95.42 57.40 81.28 74.36 90.54

Table 3: The average accuracy across five runs with different random seeds of Joint training
in the single epoch and multiple epochs settings.

evolution curve shown in Figure 2 (paper). In particular, ACCT is the average accuracy on
test data of all tasks after completing the whole continual training, of which the results on all
benchmarks are given in Table 1 (paper).

2.2 Forgetting Measure (↓)

FGTt =
1

t−1

t−1

∑
k=1

rt,k (2)

where rt,k is the forgetting on task k after the model has be trained continually up till task t,
which is calculated as follows,

rt,k = max
i∈{1,··· ,t−1}

Ri,k−Rt,k (3)

The forgetting measures the accuracy drops on previous tasks after the model is trained on
new tasks. The large forgetting values signify the model has less stability when encountering
new tasks. The results for forgetting measure are reported in Table 2. CCL-FP+ produces the
best performance on a majority of cases compared to other CL competitors, demonstrating
the overall outstanding ability of our model to overcome catastrophic forgetting even with a
very small buffer.

3 Upper Bound
Single epoch training is a very compelling and ideal setup for continual learning and somewhat
close to the spirit why we focus on general continual learning [6]. However, Joint, as an upper
bound for continual learning, suffers underfitting to some extent in this setting. In Table 3, we
compare the results of joint training in the online (single-epoch) and offline (multi-epoch)
setups.
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|BM|
M=0.2k M=0.5k M=1k M=5k

SCR Ours SCR Ours SCR Ours SCR Ours
10 40.91 50.11 45.19 57.03 46.05 60.29 46.12 63.84
20 38.85 48.24 48.83 56.89 49.24 63.63 52.67 67.17
50 31.26 43.77 45.66 54.43 57.27 65.77 64.72 72.33
100 30.31 44.08 45.29 53.18 55.78 62.37 68.67 75.86
200 31.28 37.57 43.68 49.25 55.43 58.47 72.91 75.17

Table 4: The average accuracy (%) for our model CCL-FP+ and SCR across 5 runs with
different random seeds. Part of numbers in this table are used to generate Figure 4 (paper)
and Table 4 (paper).

10 20 50 100 200
Memory Batch Size

40

45

50

55

60

65

70

75

Av
g 

Ac
cu

ra
cy

 (%
) M=0.2k

M=0.5k
M=1k
M=5k

Figure 1: Impact of the memory batch size on the Split CIFAR-10 dataset in the class
incremental setting. M is the memory buffer size.

4 Comparison with SCR
We further study the impact of different memory batch size in cases of different buffer size
for our model CCL-FP+ and SCR on the Split CIFAR-10 dataset in the class incremental
setting. As we can see in Table 4, the small memory batch size is preferable when the buffer
size is small, e.g. the performance achieves the best when |BM|= 10 for M=0.2k and starts
to drop when |BM| ≥ 20. For M=1k, |BM|= 50 is preferable and for M=5k, |BM|= 100 is
desirable.

Generally speaking, contrastive representation learning benefits from larger memory batch
size since it means more negative samples [3, 4, 5]. As we can see in Figure 1, when the
buffer size is large, e.g. M=5k, the performance significantly improves with the increase of
memory batch size and achieves the best when BM = 100 . However, in the case of small
buffer size, e.g. M=0.2k, large memory batch size can observably degrade the performance
because the model may easily overfit the memory data. Furthermore, we compare our model
CCL-FP+ with SCR [5] on S-CIFAR-10 and S-CIFAR-100 datasets in the class incremental
setting with memory batch size of 10 and 100. As shown in Table 5, our model CCL-FP+
consistently outperforms SCR in all cases.

5 Hyperparameter Sensitivity
We report the sensitivity of CCL-FP+ to hyperparameters w, α , β in terms of average accuracy
on the Split CIFAR-10 dataset in the class incremental setting in Table 6. As shown, a larger
value of w contributes to better performance demonstrating the appreciable impact of feature
propagation. The model is not overly sensitive to α and β . Generally, α ≤ 0.5 yields
decent performance. The large value of α may degrade the performance as a result of overly
protecting the representation space for past tasks and impairing the strength to adapt to new
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Model
M=0.2k M=0.5k M=1k M=5k

10 100 10 100 10 100 10 100
SCR 40.91 30.01 45.19 45.29 46.05 55.78 46.12 68.67
Ours 50.11 44.08 57.03 53.18 60.29 62.37 63.84 75.86
SCR 7.38 4.31 9.97 6.83 12.06 12.38 14.71 37.67
Ours 14.05 9.36 19.44 14.47 23.99 20.76 27.38 39.43

Table 5: The comparison of average accuracy of SCR and CCL-FP+ with different memory
batch size (10 vs. 100) on Split CIFAR-10 (up) and Split CIFAR-100 (down) datasets in the
class incremental setting. M is the memory buffer size.

w ACC α ACC β ACC
0.1 46.73 0.1 51.74 0.1 51.08
0.3 50.98 0.5 49.42 0.5 51.74
0.5 51.74 1 48.91 1 50.93

Table 6: Hyperparameter sensitivity of CCL-FP+ to w, α , β in terms of average accuracy in
the class incremental setting on the Split CIFAR-10 dataset.

tasks. The model is not sensitive to β as long as it falls into a reasonable range of [0,1].

6 2D t-SNE Visualization

Figure 2 presents the visualization results of CCL-FP+ and ER on P-MNIST. Each class/color
is consist of images from 20 tasks. The representations learned by CCL-FP+ are better
separable compared with ER.
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Figure 2: 2D t-SNE visualization of data embeddings of P-MNIST at the end of 20 tasks.
Left: ER; Right: CCL-FP+.

7 Algorithm

Algorithm 1 provides a pseudocode for CCL-FP+. CCL-FP is easily achieved by removing
the step of supervised contrastive loss. Algorithm 2 describes the procedure of reservoir
sampling [2, 7].
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Algorithm 1 Training of CCL-FP+
Input: Sequential dataset D = {D1, · · · ,DT}, batch size b, learning rate λ , scalars w, α ,
β

1: M←{} // initialize memory set

2: θo← None, θ ← Rand. Init. // define θo and initialize model parameters θ

3: θ : parameters of f and ψ // classifier f and feature extractor ψ

4: for t ∈ {1, · · · ,T} do
5: for B ∼Dt do // sample a minibatch of size b from current dataset

6: BM ∼M // sample a minibatch of size b from memory set

7: if θo is None then
8: Lce← lce( f (ψ(B∪BM))) // standard cross-entropy loss

9: Lscl ← lscl(ψ(B∪BM)) // supervised contrastive loss

10: L←Lce +β ·Lscl
11: else
12: ψ̃(B∪BM)← w ·ψ(B∪BM)+(1−w) ·Aψo(B∪BM) // modify representation using feature

propagation

13: Lce← lce( f (ψ̃(B∪BM))) // the cross-entropy loss on modified representation

14: Lcl ← lcl(ψ(B∪BM),ψo(B∪BM)) // contrastive loss on current and previous representation

15: Lscl ← lscl(ψ(B∪BM)) // supervised contrastive loss

16: L←Lce +α ·Lcl +β ·Lscl
17: end if
18: θ ← θ −λ ·∇θL // single SGD step to update parameters

19: M← reservoir(M,B) // update memory set using reservoir sampling

20: end for
21: θo← θ // update the parameters of θo to θ

22: end for
23: return θ

Algorithm 2 Reservoir Sampling
Input: The memory set M, number of seen examples N, example
(x,y, t)

1: if |M|> N then
2: M[N]← (x,y, t)
3: else
4: i = randint(0,N)
5: if i < |M| then
6: M[i]← (x,y, t) // overwrite memory slot

7: end if
8: end if
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