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Abstract

In skeleton-based 3D human pose estimation (HPE), graph convolutional networks
(GCNs) have recently achieved encouraging performance. However, most previous GCNs
are limited by coupling aggregation mechanism. To address this limitation, we intro-
duce the decoupling aggregation mechanism in CNNs to GCNs and propose group graph
convolutional networks (GroupGCN). It consists of two main components: group con-
volution and group interaction. Group convolution ensures that every group has its own
spatial aggregation kernel: the adjacent matrix. Group interaction ensures that the fea-
tures interact between groups. We consider four different forms of group interaction and
four different types of spatial aggregation kernels, aiming to conduct a comprehensive
and systematic study of decoupling aggregation mechanism in GCNs. The proposed
approach achieves the state-of-the-art performance while using 70% fewer parameters.

1 Introduction
3D human pose estimation (HPE) aims to regress the 3D positions of body joints in the
camera coordinate system from images or videos. It plays an essential role in numerous
applications such as action recognition, computer animation, and human-computer interac-
tion. Estimating 3D pose from 2D pose is an ill-posed problem and extremely challenging
because of depth ambiguity and occluded joints.

In 2D-to-3D human pose lifting task, previous works treat human joints as a feature
vector and use FCNs to model the relationship between joints [19, 22, 23, 27]. For example,
Martinez et al. [19] construct a simple but effective fully connected network to regress 3D
pose from 2D pose and yield promising 3D HPE performance. Both 2D and 3D pose can
be naturally represented by a skeleton graph in the form of 2D or 3D joint coordinates, so
that graph convolutional networks (GCNs) have been applied for 3D HPE recently [26, 28,
29, 33, 34]. Compared with FCN-based approaches, GCN-based approaches not only learn
a compact representation defined on graph nodes but also explicitly capture their structural
relationships.

Spatial aggregation is the key component of GCN. Most prior GCN approaches share
a spatial aggregation kernel for all channels, which is called coupling GCN [4]. It is not
an optimal choice since different channels represent different types of motion features and
relationships between joints are not always the same, which limits the flexibility of feature
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Figure 1: Comparison of the performance and model size between the proposed GroupGCN
and state-of-the-art GCNs designed for 3D HPE, i.e., SemGCN [32], Local-to-Global
Net [17], Weight Unsharing [16], Modulated GCN [34] and GraphSH [26]. A lower MPJPE
value indicates better performance. All methods are evaluated on Human3.6M [11] with
ground truth 2D joints as input.

extraction [3]. In contrast, every channel has an independent spatial aggregation kernel in
CNNs, capturing different spatial information in different orientations, color, and frequen-
cies. However, if we set channel-wise spatial aggregation kernels in GCNs, it makes the
model too heavy and increases the difficulty of optimization.

In this paper, similar to group convolution in CNNs, we propose group graph convolu-
tional networks (GroupGCN), a novel decoupling GCN for 3D HPE. It consists of group
convolution and group interaction. Group convolution ensures that every group has its own
spatial aggregation kernel and weight matrix. A drawback of group convolution is that the
status of the other groups is completely unknown because they are independent. As a result,
the set of independent group convolution may not be globally coherent, leading to poor per-
formance. So we propose group interaction to account for global information by making the
features interact between groups.

To addresses the dilemma between the accuracy and model complexity, we consider four
different group interaction strategies: adding-interaction, connecting-interaction, shuffling-
interaction, and interleaving-interaction. In addition, we consider four different spatial ag-
gregation kernels: symmetric matrix, higher-order matrix, self-learning matrix, self-adaptive
matrix. Specifically, we conduct a comprehensive and systematic study of the decoupling
aggregation in GCNs for 3D HPE by controlling the number of channels, computational
complexity and the number of groups.

In sum, the contribution of this paper can be summarized as follows:

• To our knowledge, we are the first to propose group graph convolutional network
(GroupGCN) and have a comprehensive and systematic investigation of decoupling
aggregation mechanism in GCNs.

• We make new conclusions that (1) decoupling aggregation can effectively improve the
performance of graph convolution, (2) different group interaction strategies and spatial
aggregation kernels have a significant impact on the performance of 3D HPE.

• The experimental results prove that GroupGCN can achieve state-of-the-art perfor-
mance with fewer parameters, as shown in Fig 1.
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2 Related Work
Group Convolution. AlexNet [13] is the first to use group convolution to handle the mem-
ory issue by distributing the model over two GPUs. The channel-wise separable convolu-
tions proposed in Xception [5], is an extreme case of group convolutions. ShuffleNet [31]
introduces channel shuffle operation to make feature exchange information between groups.
IGCV [30] proposes the concept of interleaved group convolutions, which is efficient in
parameter and computation. Our work generalizes group convolution to GCNs in a novel
form.

Graph Convolutional Networks. GCNs generalize CNNs to inputs with graph struc-
tured. The principle of constructing GCNs on the graph can be divided into two streams: the
spectral-based approaches [7, 14, 24] and the spatial-based approaches [1, 8, 12, 25]. Our ap-
proaches fall into the second stream. We briefly review the vanilla GCN as proposed in [12].
A graph based convolutional propagation contains two steps: XW and ÃX . First, input fea-
tures are transformed by a learnable weight matrix W ∈ RC×C

′
. Second, these transformed

input features are gathered by a spatial aggregation kernel Ã ∈ RN×N . The convolution op-
eration can be written as:

X
′
= σ

(
Ã(XW )

)
(1)

Where σ is the activation function, i.e., ReLU [21]. X ∈ RN×C and X
′ ∈ RN×C

′
are the

collection of features of all nodes before and after the convolution respectively. A∈ [0,1]N×N

is the adjacent matrix of G. If the joint j is depending on the joint i, then ai j = 1. Ã is
symmetrically normalized from A.

Lifting based 3D human pose estimation. Early attempts [19] simply use fully-connected
networks (FCNs) to lift 2D keypoints into 3D space. Then some works [16, 26, 32, 34]
utilize graph convolutional networks (GCNs) to learn a compact representation defined on
graph nodes and explicitly capture their structural relationships. Zhao et al. [32] propose a
semantic GCN by multiplying a learnable mask to the skeleton-based affinity matrix. Liu et
al. [16] have a comprehensive investigation of weight sharing in a GCN.

3 Our Approach
We first introduce group convolution in Sec. 3.1. Then, group interaction is introduced in
Sec. 3.2. Finally, we present the network architecture in Sec. 3.3.

3.1 Group convolution
For clarity, we first compare the convolution kernel in CNNs and GCNs. The size of convo-
lution kernel is expressed as:

CNNs : d×d×C
′ ×C (2)

GCNs : n×n+C
′ ×C (3)

In CNNs, ”× ” means that every channel has an independent convolutional kernel, i.e.,
Eqs. (2). However, ”+ ” means that the spatial aggregation kernel is shared by all channels
in GCNs, i.e., Eqs. (3). Coupling aggregation forces GCN to aggregate features with the
same topology in different channels.
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Figure 2: Illustration of group convolution. (a) Group convolution employ channel grouping
and decoupling aggregation in CNNs. (b) We introduce the group convolution into GCNs
and propose GroupGCN.

To resolve this issue, we introduce group convolution to GCNs. As shown in Fig. 2,
similar to the group convolution in CNNs, we also divide the channels into g groups. Every
group has an independent adjacent matrix in GroupGCN. Channels in a group share one
adjacent matrix to reduce the redundancy of the adjacent matrices. In our experiments,
2∼ 16 groups are enough.

Inspired by [15], we consider four different adjacent matrices to learn the relationship
beyond the natural connections of body joints.

• Symmetric matrix Ãs, which encodes the human skeleton symmetrical structure for
joints that have a symmetrical counterpart, i.e. leg joints. ρ is Softmax nonlinear-
ity, Ms ∈ RN×N is a learnable mask matrix, and � is an element-wise mutlipication
operation. Formally, the Ãs is defined as

Ãs = ρ (Ms�As) (4)

• High-order matrix Ãk, which explicitly encodes first-order and second-order kinematic
connections for joints, i.e. shoulder-elbow, shoulder-wrist. Mk ∈ RN×N is a learnable
mask matrix. Formally,

Ãk = ρ (Mk�Ak) (5)

• Self-learning matrix Ac, which can create new connections and the existence and
strength of connections are updated during the training process. C ∈ RN×N is a learn-
able matrix. Formally,

Ac = A+C (6)

• Self-adaptive matrix Ab, which expresses a data-dependent matrix to determine whether
a connection exists between nodes and how strong the connection is. Given two node
features xi and x j, we first use two embedding functions θ and φ to reduce feature di-
mension before sending input features into correlation modeling functionM(·). [·‖·]
denotes concatenation and σ is the LeakyReLU nonlinearity with negative input slope
α = 0.2. The operation is formulated as

αi j =
eσ(M([θ(xi)‖φ(x j)]))

∑
N
k=1 eσ(M([θ(xi)‖φ(xk)]))

(7)
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Figure 3: Illustration of four group interaction approaches.

3.2 Group interaction

The channel groups are independent of each other, i.e., Eqs. (3), hindering the exchange of
information between different groups of different nodes and limiting the generalization abil-
ity of GroupGCN. To overcome the side effects brought by group convolutions, we introduce
group interaction to account for the information of different groups. In addition, we consider
four group interaction methods, illustrated in Fig. 3.

The four group interaction methods are easy to implement:

• Adding Interaction (AI). The results of individual convolution of each group are added
together to realize the interaction of information between different groups. Formally,

X
′
= σ

(
g

∑
i=1

Ai (XiWi)

)
,Wi ∈ R

C
g×C

′
(8)

• Connecting Interaction (CI). First, we concatenate the channels of each group. Then
we copy it g times for group convolution to generalize the features of each group
independently. Formally,

X
′
g = σ (Ag (Concatenate(X1, ...,Xg)Wg)) ,Wg ∈ RC×C

′
g (9)

• Shuffling Interaction (SI). This structure is similar to that used in ShuffleNet [31],
which splits the channels in each group into g sub-groups and feed each group with
different subgroups. For example, suppose a GroupGCN layer with g group whose
input shape is (g,d), we first transpose it into (d,g), flattening and then reshape it
back as the input shape. The channel shuffle operation is efficient and elegant.

• Interleaving Interaction (II). We introduce interleaved group convolutions proposed
by IGCNets [30] into GCN. It can be simple and efficiently implemented by a channel
permute operation which permutes input shape of the GroupGCN layer from (g,d) to
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Figure 4: The network architectures of the proposed GroupGCN for 3D HPE.

(d,g). The number of channels group and the channels of each group are interchanged
that means the channels in each group of output come from different groups of input.

3.3 Network Architecture
As illustrated in Fig. 4, we use the network architecture for 3D HPE and compare different
decoupling aggregation approaches in our experiments. Following Martinez et al [19], we
use two group graph convolutional layers as a building block with residual connections [10].
Each group graph convolutional layer is followed by a batch normalization and a ReLU [21]
activation function except for the last one.

4 Experiments

4.1 Datasets and Evaluation Protocols
We perform our experiments on Human3.6M [11] and MPI-INF-3DHP [20] dataset and
follow the standard evaluation procedure.

Dataset. The Human 3.6M dataset consists of 3.6 million video frames which are cap-
tured from 4 camera viewpoints at 50 Hz. There are 11 subjects and 15 daily activities like
eating, discussion, sitting, greeting, walking and so on. For data preprocessing, we follow
previous work [16, 18, 23, 34] to apply standard normalization to 2D and 3D keypoints for
fair and effective comparison. We use five subjects (S1, S5, S6, S7, S8) for training and two
subjects (S9, S11) for testing.

The MPI-INF-3DHP dataset is also a recently popular large-scale 3D human pose dataset.
It contains both constrained indoor scenes and complex outdoor scenes, covering a greater
diversity of poses and actions, where it is usually taken as a cross-dataset setting to verify
the generalization ability of the proposed methods.

Evaluation protocols. It is commonly evaluated by two standard protocols: Protocol
#1 and Protocol #2. Protocol #1 calculates the mean per joint positioning error (MPJPE)
between the prediction and the ground truth after aligning the root joint. Protocol #2 employs
a rigid alignment with the ground truth to relieve the inherent rotation, translation and scale
problems before calculating the mean per joint positioning error (P-MPJPE).

4.2 Ablation Study
We conduct comprehensive ablation study to compare the different decoupling aggregation
methods in controlled settings. Note that the 2D ground truth is taken as input for all model
to avoid the influence of 2D human pose detector. Our model is implemented in Pytorch and
all experiments are conducted on a single Nvidia RTX 2080Ti GPU.
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Channels Group Num Params MPJPE P-MPJPE
128 1 0.27M 37.65 28.88
128 2 0.27M 37.34 28.63
128 4 0.28M 37.01 28.33
128 8 0.29M 37.56 28.94

256 1 1.06M 36.72 28.40
256 2 1.06M 36.02 27.85
256 4 1.07M 35.80 27.53
256 8 1.08M 35.33 27.68
256 16 1.10M 35.55 28.06

Table 1: Ablation study on Adding-
interaction (AI).

Channels Group Num Params MPJPE P-MPJPE
128 1 0.27M 37.65 28.88
128 2 0.27M 37.64 29.40
128 4 0.28M 36.83 28.50
128 8 0.29M 35.93 28.29
256 1 1.06M 36.72 28.40
256 2 1.06M 36.14 27.89
256 4 1.07M 35.28 27.36
256 8 1.08M 36.45 27.36
256 16 1.10M 37.01 27.85

Table 2: Ablation study on Connecting-
interaction (CI).

Implementation details. We set the initial learning rate 0.001, the decay factor 0.95 per
epoch and adopt Adam [9] as optimization method. Following previous work [23], we ini-
tialize the weights in GroupGCN using the technique described in [9]. We use a batch size
256 and train each model for 50 epochs.

Effect of the GroupGCN. We compare the different group interaction methods AI,CI,SI,II,
described in Section. 3.2. By default, decoupling graph convolution degenerates into cou-
pling graph convolution (g = 1), which serves as baseline in our experiments. We fix the
spatial aggregation kernel of each group to be self-learning matrix Ac for fair comparison.
From Table 1 ∼ 4, we can draw the following conclusions:

• Compared to coupling graph convolution network (g = 1), group graph convolution
network achieves higher performance. It is found that both AI and CI are superior to
SI and II. AI and CI improve upon baseline by a large margin while only increase
few parameters. Specifically, AI improves upon baseline by 1.39mm (MPJPE) and
0.87mm (P-MPJPE) when C = 256 and g = 8. CI improve upon baseline by 1.44mm
(MPJPE) and 1.04mm (P-MPJPE) when C = 256 and g = 4. However, SI and II
performs worse than baseline. AI and CI are used as our default setting in the following
discussion.

• The number of groups has a significant impact on the performance of 3D HPE. We
do not need to decouple the adjacent matrix of every channel. It is shown that the
performance first improves with more groups. However, with more than 8 groups, the
performance drops. 4∼8 groups are enough for 3D HPE.

Effect of the spatial aggregation kernel. Then we study the impact of different spatial
aggregation kernels on the 3D HPE performance. We fix the number of groups to be 4.
We fix channels of each group graph convolutional layer to be 256. The result is shown in
Table 5 and Table 6. Ac plays an important role in the performance of the GroupGCN because
it allows the graph to include extra edges beyond the predefined. However, Ab perform worse
than Ac indicates that too much freedom can lead to overfitting and harm the generalization
ability of GroupGCN. Ãs, Ãk and Ab have little effect on the performance of models.
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Channels Group Num Params MPJPE P-MPJPE
128 1 0.27M 37.65 28.88
128 2 0.14M 38.37 29.51

256 1 1.06M 36.72 28.40
256 2 0.54M 37.18 28.64
256 4 0.28M 37.80 28.97
256 8 0.16M 39.38 31.08

Table 3: Ablation study on Shuffling-
interaction (SI).

Channels Group Num Params MPJPE P-MPJPE
128 1 0.27M 37.65 28.88
128 2 0.13M 42.13 33.03

256 1 1.06M 36.72 28.40
256 2 0.43M 40.97 31.71
256 4 0.23M 42.11 32.23
256 8 0.14M 41.12 32.75

Table 4: Ablation study on Interleaving-
interaction (II).

Methods adjacent matrixs Params MPJPE P-MPJPE
AI Ã,Ãk ,Ac,Ab 1.13M 36.14 27.77
AI Ãs,Ã,Ac,Ab 1.13M 37.93 28.85
AI Ãs,Ãk ,Ã,Ab 1.13M 36.21 27.87
AI Ãs,Ãk ,Ac,Ã 1.06M 36.63 27.83
AI Ãs,Ãk ,Ac,Ab 1.13M 37.41 28.29
AI Ac,Ac,Ac,Ac 1.07M 35.80 27.53
AI Ab,Ab,Ab,Ab 1.33M 38.30 29.41

Table 5: Ablation study on different spa-
tial aggregation kernels.

Methods adjacent matrixs Params MPJPE P-MPJPE
CI Ã,Ãk ,Ac,Ab 2.12M 36.06 28.07
CI Ãs,Ã,Ac,Ab 2.12M 35.64 27.73
CI Ãs,Ãk ,Ã,Ab 2.12M 36.72 28.40
CI Ãs,Ãk ,Ac,Ã 1.06M 36.44 28.16
CI Ãs,Ãk ,Ac,Ab 2.12M 36.59 27.99
CI Ac,Ac,Ac,Ac 1.07M 35.28 27.36
CI Ab,Ab,Ab,Ab 1.33M 37.84 28.52

Table 6: Ablation study on different spa-
tial aggregation kernels.

4.3 Comparison with the State-of-The-Art Methods
First, we compare the GroupGCN with some state-of-the-art methods on Human3.6M under
both Protocol #1 and Protocol #2. We use two types of 2D joint detection data for evaluation:
Cascaded Pyramid Network (CPN) [2] detections and ground truth 2D keypoints.

Table 7 and Table 8 show the results under two protocols respectively. Compared with
other baselines, our methods achieve the state-of-the-art performance with either 2D detected
or 2D ground truth as input. Note that our methods only have around one forth parameters
1.07M of [26] (3.70M).

Then, we compare the GroupGCN with some state-of-the-art methods on MPI-INF-
3DHP, as shown in Table 9. Although we train the model using only the Human3.6M,
GroupGCN outperforms others on MPI-INF-3DHP, indicating that our approach has strong
generalization capabilities to unseen datasets.

4.4 Qualitative Results
Figure 5 and 6 shows that the performance of the proposed GroupGCN model on the Hu-
man3.6M dataset and in-the-wild images. It can accurately predict 3D poses of different
persons for various actions. It indicating the effectiveness of our proposed approach in tack-
ling the 2D-to-3D pose estimation problem.

5 Conclusions
In this paper, we propose GroupGCN and have a comprehensive and systematic study of
decoupling aggregation mechanism in GCNs. With our unique group interaction methods,
together with the group convolution strategy which has different types of spatial aggregation
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Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.
Martinez et al. [19] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Park et al. [22] BMVC’18 49.4 54.3 51.6 55.0 61.0 73.3 53.7 50.0 68.5 88.7 58.6 56.8 57.8 46.2 48.6 58.6
Zhao et al. [32]† CVPR’19 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
liu et al. [16]† ECCV’20 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Xu et al. [26]† CVPR’21 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Ours-AI † 45.4 51.4 49.8 50.3 55.0 60.8 47.9 48.4 61.0 70.7 52.7 48.9 55.2 40.1 41.9 52.0
Ours-CI † 45.0 50.9 49.0 49.8 52.2 60.9 49.1 46.8 61.2 70.2 51.8 48.6 54.6 39.6 41.2 51.6
Martinez et al. [19] ICCV’17 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Zhao et al. [32]† CVPR’19 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
liu et al. [16]† ECCV’20 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
Zeng et al. [27] ECCV’20 35.9 36.7 29.3 34.5 36.0 42.8 37.7 31.7 40.1 44.3 35.8 37.2 36.2 33.7 34.0 36.4
Ci et al. [6]† ICCV’19 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3
Xu et al. [26]† CVPR’21 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8
Ours-AI † 31.1 37.3 29.9 32.7 35.0 40.5 38.3 32.7 39.4 48.4 33.6 37.0 35.7 27.8 29.5 35.3
Ours-CI † 32.5 36.4 30.7 33.2 34.9 40.0 37.8 33.1 38.3 47.8 34.4 36.2 35.1 28.4 29.2 35.2

Table 7: Comparison of single-frame 3D pose estimation in terms of MPJPE on Human3.6M.
Works above the double line show results from detected 2D poses, and the below results from
2d groupd truth inputs to explore the upper bound of these methods. We highlight the graph-
based methods by †. Best results in bold.

Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.
Martinez et al. [19] ICCV’17 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Park et al. [22] BMVC’18 38.3 42.5 41.5 43.3 47.5 53.0 39.3 37.1 54.1 64.3 46.0 42.0 44.8 34.7 38.7 45.0
Ci et al. [6]† ICCV’19 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2
liu et al. [16]† ECCV’20 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
Ours-AI † 35.7 39.7 38.5 40.9 41.6 46.1 36.3 36.5 49.1 55.2 41.6 36.6 43.5 31.2 34.4 40.49
Ours-CI † 35.3 39.3 38.4 40.8 41.4 45.7 36.9 35.1 48.9 55.2 41.2 36.3 42.6 30.9 33.7 40.14
Martinez et al. [19] ICCV’17 - - - - - - - - - - - - - - - 35.25
Zhao et al. [32]† CVPR’19 - - - - - - - - - - - - - - - 31.46
liu et al. [16]† ECCV’20 - - - - - - - - - - - - - - - 30.09
Zeng et al. [27] ECCV’20 26.0 28.9 23.7 26.9 27.4 33.1 27.9 25.0 32.4 40.9 28.8 29.2 29.3 23.3 24.5 28.5
Ours-AI † 23.4 29.1 24.7 26.2 26.3 31.1 28.8 24.3 30.7 37.7 27.2 28.6 29.1 23.4 24.0 27.6
Ours-CI † 23.4 27.9 24.9 26.0 26.0 30.1 28.3 24.7 31.0 37.3 27.2 27.8 28.6 23.1 26.0 27.3

Table 8: Comparison of single-frame 3D pose estimation in terms of P-MPJPE on Hu-
man3.6M. Works above the double line show results from detected 2D poses, and the below
results from 2d groupd truth inputs to explore the upper bound of these methods. We high-
light the graph-based methods by †. Best results in bold.

GS noGS Outdoor All
(PCK)

All
(AUC)

Martinez et al. [19] ICCV’17 49.8 42.5 31.2 42.5 17.0
Ci et al. [6] ICCV’19 74.8 70.8 77.3 74.0 36.7
Zeng et al. [27] ECCV’20 - - 80.3 77.6 43.8
liu et al. [16] ECCV’20 77.6 80.5 80.1 79.3 47.6
Xu et al. [26] CVPR’21 81.5 81.7 75.2 80.1 45.8
Zeng [28] ICCV’21 - - 84.6 82.1 46.2
Ours-AI † 81.1 84.0 77.6 81.3 49.7
Ours-CI † 80.4 84.5 77.2 81.1 49.9

Table 9: Results on the MPI-INF-3DHP test set.
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Input Our prediction Ground truth Input Our prediction Ground truth

Figure 5: Qualitative results of our method on Human3.6M [11].

Input Our prediction Input Our prediction

Figure 6: Qualitative results of our method on in-the-wild images.

kernels, our methods achieve accurate 2D-to-3D human pose estimation outperforming the
start-of-the-art. We hope that our methods would inspire the field of skeleton-based 3D HPE.
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