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Abstract

The goal of unsupervised cross-modal hashing (UCMH) is to map different modali-
ties into a semantic-preserving hamming space without requiring label supervision. Ex-
isting deep approaches mainly took classic CNNs and multilayer perceptrons to encode
images and texts, which are inadequate for semantic extraction and hard to generate
high-quality hash codes. Motivated by recent advances in transformers, we take the first
investigation of transformer-based UCMH that learns to generate hash codes via global
representation (i.e., “[CLS]”) tokens. We propose hugging, a multi-granularity aligning
framework for transformer-based UCMH learning. In particular during training, apart
from directly aligning hash codes from global tokens, hugging further develops fine-
grained alignment based on content token sequences, which fully exploits the structural
semantics contained in transformer architectures. Unifying global and fine-grained align-
ment enables complete cross-modal learning, helping to bridge heterogeneous modality
gaps and providing solid self-supervision. As an instantiation of the proposed hugging
framework, we build a simple HUGGINGHASH model with a contrastive hashing learning
objective and demonstrate its comprehensive merits on three benchmark datasets. More-
over, we also adapt several state-of-the-art hashing methods using the hugging frame-
work, verifying that it can be general and practical to benefit transformer-based UCMH.

1 Introduction

Unsupervised cross-modal hashing (UCMH) is a practical task that learns to generate bi-
nary representations for different modalities (e.g. images and texts) without requiring label
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information. It has been a popular indexing strategy for large-scale multimedia data be-
cause the Hamming descriptors can accelerate cross-modal retrieval with fast XOR opera-
tors [3, 53, 55, 64]. The quality of hash representations is inherently subject to multimedia
understanding. Although neural networks have made remarkable progress in hashing, the
advances of deep learning have yet to be fully exploited. State-of-the-art approaches [18,
26, 50, 56] mainly used classic convolutional neural networks (CNNs), e.g. VGGNet [48]
and AlexNet [23], to extract visual features and used multilayer perceptrons (MLPs) to en-
code text information. These designs are sub-optimal to capture semantics from visual and
linguistic data, and they also suffer from limited transferability. To improve UCMH and
keep pace with the development of deep learning, one promising direction is to explore
transformer-based methodology.

In the past few years, transformers [52] have
shown excellent talents in computer vision [4, 9, 37]
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transformer-based image hashing [6, 10, 13, 29, 39]  (a) Handshaking (b) Hugging

and video hashing [15, 28], which have shown im-  Fjoure 1: Alignment paradigms for

pressive results. However, transformer-based cross-
modal hashing remains under-explored. How can
UCMH benefit from transformers? How can we
make better use of transformers for cross-modal

transformer-based UCMH. Com-
pared with Handshaking, Hugging
further exploits fine-grained align-
ment based on the content tokens.

hashing? These questions motivate our study.

Although pre-trained transformers provide solid
semantic extraction for each modality, UCMH is still
non-trivial. The main challenge is to bridge het-
erogeneous modalities so that the hash codes can
be well aligned. Analogous to existing CNN-MLP-
based UCMH models, we can train transformer-
based UCMH models to produce hash codes via the
global representation (i.e., “[CLS]”) tokens. A simple way for learning is to align the global
tokens using the objectives in existing UCMH methods. We liken this global alignment
strategy to “handshaking”, as shown in Figure 1(a). In practice, handshaking is effective
as expected but can be improved to reduce the modality gap. Note that transformer is a se-
quential architecture that arranges inputs as sequences. It naturally provides a set of content
tokens (e.g. words of a text or patches of an image) with fine-grained and structural seman-
tics, which can capture heterogeneous modality knowledge but was usually overlooked.

To enhance transformer-based UCMH learning, we present a multi-granularity align-
ment framework dubbed hugging, as illustrated in Figure 1(b). Besides aligning the hash-
ing representations from the “[CLS]” tokens, we further develop a fine-grained alignment
mechanism based on the content tokens. In particular, we construct another shared latent
space with semantic structure via a GhostVLAD [69] module. Each content token in this
space is softly assigned to a series of parameterized clusters, each representing a latent topic
or semantic concept. Cluster-wise contrastive [5, 14] alignment serves as an auxiliary ob-
jective for model training, which enhances the cross-modal alignment and effectively im-

Unifying multi-granularity align-
ment provides solid self-supervision
for cross-modal hashing. Note
that fine-grained alignment is an
auxiliary task and is removed after
finishing training. Thus, it will not
increase extra inference overhead.
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Figure 2: The HUGGINGHASH model. During training, it unifies global alignment based on
hash codes and fine-grained alignment using GhostVLAD [69] based on content tokens. In
inference, we deactivate the fine-grained alignment so that it will not impose an extra cost.

proves the cross-modal consistency of the learned hash codes. After training, we remove
the GhostVLAD module and the fine-grained alignment such that there is no extra infer-
ence overhead. We instantiate the hugging framework by building a simple HUGGINGHASH
model with contrastive learning for global alignment. Experiments show that HUGGING-
HASH outperforms state-of-the-art UCMH methods integrating transformers in handshaking
style. Moreover, we also adapt several state-of-the-art UCMH methods with the proposed
hugging framework, demonstrating its general effectiveness for transformer-based UCMH.
Contribution summary: (i) To our knowledge, we are the first to study transformer-based
UCMH, providing a research basis for this promising direction. (ii) We propose hugging
that unifies multi-granularity alignment for transformer-based UCMH. (iii) Extensive exper-
iments verify the effectiveness of hugging, and it is also compatible with state-of-the-arts.

2 The Proposed Method

2.1 Problem Formulation and Method Overview

Without loss of generality, we study text-image hashing as an example of cross-modal hash-
ing. Given an unlabeled training set D of Np naturally coexisted text-image pairs, our goal
is to learn a pair of modality-specific hash encoders that encode texts and images as L-bit
semantic-preserving binary codes for efficient cross-modal retrieval.

To this end, we construct a HUGGINGHASH model using the hugging framework, as
illustrated in Figure 2. Specifically, given a training pair, we first preprocess the text and the
image as the input tokens for transformers. Then, we extract features with transformers and
get the output embeddings from the [CLS] and content tokens (§2.2). Next, we forward the
[CLS] tokens to the hash modules and produce text and image hash code vectors. Meanwhile,
we project the embeddings of content tokens to a cross-modal latent space. Finally, we
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conduct multi-granularity alignment, including the global alignment based on the hash codes
and the structural alignment based on the latent content embeddings, to bridge text and image
modalities (§2.3). In inference, we deactivate the components for structural alignment and
directly produce the hash codes through the global branch (§2.4).

2.2 Feature Extraction with Transformers

For each text sample, we tokenize it into word pieces and construct content tokens. Then we
append a [CLS] token and form the text input. Denote the token sequence of the i-th text in a
mini-batch B by T; = {ti[cLs], ti1,ti2, - ot Kt} where K is the number of content tokens for
the i-th text. We pad the sequence to a fixed length add position embeddings and forward 1t
to the BERT [7] encoder f*(-; 0 f) to compute the token embeddings, namely x; ¢ g € R

t
and {x; k}lil C RP". We can formulate the whole process by

X, = f(T;: 0% ) € R? k=[CLS],1,2,-- K} (1)

For each image sample, we use the ViT [9] pre-processor to patchify it into a fixed num-
ber (e.g. 256) of content tokens and add a [CLS] token to form the image input. We denote
the token sequence of the i-th image in a mini-batch B by V; = {vicLs,Vi,1,Vi2, "+, Vik¥ }s
where KV is the number of content tokens. We then add position embeddings and forward
them to the ViT f¥(-;87}) to compute embeddings, namely X} 5 € R”" and {x;’k}kKll C

RP". Analogous to the text side, we summarize the image feature extraction process by

X =f"(Vi:09) R k=[CLS], 1,2, ,K". ©)

2.3 Hugging: Multi-granularity Alignment for Training

Though transformers provide better understanding, aligning heterogeneous knowledge be-
tween texts and images is still challenging for hashing learning. We present hugging, a
multi-granularity alignment framework to tackle it. In addition to the global alignment based
on the hash codes, we design a fine-grained and structural alignment using GhostVLAD [69]
based on the content tokens. The global alignment provides direct guidance on hash codes,
while the structural alignment supplies fine-grained supervision to reduce the modality gap.

2.3.1 Global Alignment

We apply global alignment to the hash codes. First, we project and convert the output em-
beddings of the aggregation tokens (i.e., the [CLS] tokens) into binary hash codes:

. 0!
hi=tanh (ot ' (x} o 5))) € [1,+1]E, 9t R O RE, 3)
, o
h{ = tanh (-9 (x}jcrs))) € [1,+1]F, ¢V :RP % RE, )
b; = h; —sg (b —sgn(h)) € {-1,+1}%, )
b} = h} —sg(h) —sgn(h})) € {—1,+1}%, (6)

where ¢' and ¢" are modality-specific projection layers. o > 0 is a scaling factor in control-
ling the smoothness of the tanh outputs. h} and A} are the smoothed hash codes. sgn(-) is a
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sign function that outputs +1 for positive input and —1 otherwise on each element. sg(-) is
the stop gradient operator that is the identity function in the forward pass but drops gradient
for variables inside it during the backward pass. Eq.(5) and eq.(6) allow us to directly pass
the gradient straight through [2] the binary hash codes, i.e., b} and b}. In HUGGINGHASH,
we adopt the contrastive learning loss [5, 14, 41] for global alignment, namely

1 & exp(Mi/7) exp(M;i/7)

Lon = — (7
oA 2|B| & Z‘Ji‘lexp(M,-j/r) ZL.lillexp(Mj[/r)

where B denotes a mini-batch. M;; = cos (b}, b}). T > 0 is the temperature hyper-parameter.

2.3.2 Fine-grained, Structural Alignment

We present a clustering-based strategy with GhostVLAD [69] for fine-grained alignment.
Our basic idea is to exploit concept-aware semantics and enable concept-aware alignment in
the latent space. Specifically, we first project the output embeddings of the content tokens'
into a shared latent space, i.e.,

6(
2=y ay) k=12, K, y R L RP ®)

. o)
=y (x),), k=12 K y":R” — RP, 9)

where y!' and y" are the projection layers for texts and images, respectively. D is the dimen-
sion of the shared latent space. We denote the collections of latent embeddings for text and
image content tokens as Z} = {z} k} oy and ZY¥ = {zlvk}fll respectively.

After that, we use a GhostVLAD module to learn N, + 1 D-dimensional cluster centroids,
{co,c1,€2,--- ,cn.}. Specially, we designate ¢ as the “ghost” centroid to filter noise, e.g.
uninformative words in a sentence and background features for an image. We forward Z}
and Z]Y to the GhostVLAD, where each embedding will be softly assigned to all clusters.
For instance, the assignment score of the text embedding z}, w.r.t. the n-th cluster is

exp (BatchNorm(wIz; o)

App= , (10)
’k’ ilv,‘ oexp(BatchNorm(w 2!, ))
where BatchNorm(-) is the batch normalization [21] and W = [wg, wy,--- ,wy,_] is the train-

able parameter matrix. After clustering, we aggregate modality-wise residual embeddings at
each cluster except the “ghost” cluster. Take the n-th cluster as an example. We aggregate
residual embeddings of Z; and Z}’ respectively by

Kl-t KY

=Y g @p =€) Tiw= Y ik (Zx—en). an
k=1 k=1

Finally, we define the cluster-wise contrastive learning loss for fine-grained alignment as

B
¥y (oo expl/o) 1)
B )
2N 'Bi SN\ S explmy /1) X explnty/7)

IThe text padding tokens have been removed from the outputs.

FA
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where mj}; = cos(r} ,,r} ) is the fine-grained similarity of Zj and Z} w.rt. the n-th cluster.

B denotes a training mini-batch and 7 denotes the temperature hyper-parameter.

2.3.3 Learning Objectives

Here we summarize the learning objectives of HUGGINGHASH as follows:

LyuceincHasn = LA + AEFA + Yunant, (13)
|B|
l \ \
R = 5757 1 (161 -+ 187 B2). (14)

Rgquant is the quantization loss. A,y > 0 are the hyper-parameters to balance different loss
terms. The proposed hugging framework is highly flexible and compatible. By replacing
Lga with other hashing objectives, we can easily extend hugging to existing methods.

2.4 Indexing and Retrieval

We take the text-to-image retrieval as an example to describe how HUGGINGHASH infer-
ences. First, we encode the database images with the image hash encoder, which comprises
the patchifier, the image transformer and the image hash module. We denote the hash codes
of the i-th image by b} € {—1,+1}*. Given a text query, we forward it with the text hash
encoder, which comprises the tokenizer, the text transformer and the text hash module. We
denote the query hash codes as b; € {—1,+1}E. We use it to retrieve the nearest database

images in the Hamming space. The Hamming distance between bf] and b} is

\% 1 Tpv
(bl b)) = 5 (L= By BY) (15)

3 Experiments

3.1 Experimental Setup

Datasets. We conduct experiments on three benchmark datasets in cross-modal hashing:
(i) Flickr25K [20] contains 25,000 image-text pairs with 24 annotated labels. We filtering
out data without labels and use 20,015 pairs in our experiment. The tag information for
each image is represented as a 1,386-dimensional bag-of-words vector. (ii) MSCOCO [31]
consists of 123,558 image-sentence pairs from 80 object categories. Each image is associated
with 4 short sentences describing its content. The text information is represented as a 2,000-
dimensional bag-of-words vector. (iii) Wiki [44] composes of 2,866 documents from 10
categories. Each document contains an image and a text with at least 70 words. An 128-
dimensional SIFT feature vector is provided for each image, and each text is represented as
a 10-dimensional topic vector. The data split information is described in Table 1.

Implementation Details.  We

implement HUGGINGHASH with Table 1: Dataset information and settings.
PyTOrCh [42] We ad()pt the stan- Dataset Text Style Setting Reference #Train ~ #Query #Database Metric

: Flickr25K [20] Hashtags  Li et al. [26] 5000 2000 18015  MAP@AI
dard metric, mean average pre- <ol [31] Semtence Wangetal. [56] 122,558 1000 122,558  MAP@AIl
cision (MAP@N), for evaluation. _Wiki44] Article  Wangetal. [56] 2,173 693 2,173 MAP@50

For comparison, shallow methods
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Table 2: Cross-modal retrieval mean average precision (MAP) results for different numbers
of bits on the three datasets. ‘I2T” and “T2I” stand for ‘Image-to-Text’ and ‘Text-to-Image’
for short, respectively. The best value of each column is shown in boldface.

Dataset — Flickr25K MSCOCO Wiki
T21 Retrieval 12T Retrieval T2I Retrieval L2T Retrieval T2I Retrieval 12T Retrieval
Method | Venue | Backbone |
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
CVH [24] LCAT11 0607 0591 0581 0602 0.587 0578 0507 0479 0446 0499 0471 0443 0252 0235 0.71 0.179 0.162 0.153
IMH [49] SIGMOD’ 13 0586 0593 0589 0588 0581 0585 0413 0435 0443 0416 0435 0443 0467 0478 0453 0201 0203 0.204
CMFH [8] TIP'16  Non-Deep  0.611 0.606 0575 0659 0.660 0.663 0453 0435 0499 0442 0423 0492 0595 0.601 0.616 0251 0253 0.259
FSH [32] CVPR'17 0.589 0595 0595 059 0.597 0597 - - - - - - - - E - - -
ACQ[22] 1ccv'17 - - - - - . 0565 0.561 0520 0559 0.553 0515 - . . . . E
DBRC [30] MM'17 0591 0596 0598 059 0600 0.602 0562 0.566 0573 0555 0.561 0564 0574 0588 0.598 0253 0265 0.269
UGACH[67]  AAAT'I8 0676 0.692 0703 0676 0.693 0702 0566 0595 0.607 0550 0584 0599 0544 0.555 0572 0388 0392 0.403
UCH [26] AAAT'19 0.661 0.667 0668 0654 0.669 0679 0446 0469 0488 0447 0471 0485 - - - - - -
DISRH [50] ICCV'IO (oo vip 0683 0694 0717 0666 0678 0699 0573 0.578 0584 0572 0575 0579 0611 0.635 0646 0388 0403 0412
UKD-SS[18]  CVPR20 0704 0705 0714 0700 0706 0709  0.580 0.594 0603 0564 0.592 0601 0556 0565 0.578 0403 0411 0416
SRCH [56] UCAI20 - - . - . . 0600 0.606 0.623 0598 0.605 0.623 . . E . - -
DSAH [60] MM'20 0707 0713 0728 0701 0712 0722 0.606 0599 0.620 0.598 0589 0609 0644 0.650 0.660 0416 0430 0.438
DGCPN [63]  AAAI2I 0729 0741 0749 0732 0742 0751  0.594 0603 0.616 0.587 0594 0612 0629 0.638 0.641 0422 0440 0.446
DBRC [30] MM'17 0628 0.633 0639 0627 0.637 0642 0592 0605 0.602 0.59% 0603 0611 0591 0.59 0599 0449 0460 0.466
DISRH [50] ICCV’ 19 0716 0724 0725 0712 0718 0723 0623 0.621 0627 0619 0.624 0627 0640 0649 0652 0496 0502 0.511
DSAH [60] MM20  Transformers 0726 0729 0729 0723 0.727 0734  0.641 0636 0.642 0637 0639 0648 0655 0.661 0.667 0491 0489 0.501
DGCPN[63]  AAAT2I 0.743 0756 0751 0745 0750 0755  0.638 0649 0.650 0.633 0641 0643 0651 0.658 0.662 0489 0498 0.503
HUGGINGHASH BMVC'22 0.745 0760 0766 0752 0.758 0764  0.652 0.661 0.663 0.646 0.653 0.662  0.659 0.669 0.675 0522 0520 0.526

take bag-of-words features and hand-crafted visual descriptors (e.g. SIFT [38]) as text and
image inputs, respectively. Deep methods use CNN (e.g. AlexNet [23]) features as image
inputs. For transformer-based methods, we use pretrained BERT [7] (‘bert-base-uncased’)
and ViT [9] (‘vit-base-patch16-224") as default transformers, where the token embedding
dimensions are D' = DV = 768. The maximum number of text tokens is 128. The the di-
mension of fine-grained alignment space is D = 128. Other default settings are as follow: (i)
The loss weights in eq.(13) are A = 0.2 and y = 1. (ii) The scaling factor in eq.(3) and eq.(4)
is oo = 0.5. (iii) The temperature factor in eq.(7) and eq.(12) is T = 0.2. (iv) The number of
active cluster in GhostVLAD is N, = 7.

3.2 Comparison with Existing Methods

Performance. Table 2 reports the MAP results under different numbers of hash bits. The
comparison is with 13 UCMH baselines: (i) 5 shallow methods: CVH [24], IMH [49],
CMFH [8], FSH [32], ACQ [22]. (ii) 8 SOTA deep methods: DBRC [30], UGACH [67],
UCH [26], DJSRH [50], UKD-SS [18], SRCH [56], DSAH [60], DGCPN [63]. To explore
the impact of transformers on UCMH, we adapt open-sourced implementations of 4 repre-
sentative baselines, i.e., DBRC, DJSRH, DSAH, and DGCPN, by using the same backbones
as HUGGINGHASH. The same methods in the ‘Transformers’ block outperform those in the
‘CNN + MLP’ block by considerable margins. It verifies that pre-trained transformers pro-
vide better modality understandings than CNNs and MLPs, thus contributing to high-quality
hash codes. Besides, on all settings, HUGGINGHASH outperforms transformer-based base-
lines that only consider global alignment. In terms of global alignment for hash codes,
although HUGGINGHASH adopts a simple contrastive learning objective (i.e., eq.( 7)) that is
much simpler than the baselines, the superior results it shows indicate the effectiveness of
exploring multi-granularity alignment with transformers beyond global alignment itself.

Transferability. Transferability is an important but often ignored target in practice, reflect-
ing the domain generalizability from offline training to online serving. Here we conduct a
multi-dataset (Flickr25K-MSCOCO) evaluation with DBRC, DJSRH, DSAH, DGCPN, and
the proposed HUGGINGHASH. We compare standard (i.e., train and test on the same dataset)
and zero-shot performance (i.e., train and test on different datasets). We also investigate
different backbones. To deal with different vocabularies between datasets, we replace the
bag-of-words features with the word2vec [25] features as the text inputs for vanilla variants
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(“AlexNet+MLP(W2V)”). “BERT+ViT” indicates transformer-based variants using global
alignment. “BERT+ViT +Hugging” indicates the variants with hugging.

The results are shown in Fig-
ure 3. We can learn that trans-
formers not only boost in-domain per-
formance but also improve generaliz-
ability. Using the proposed hugging " e ot 20 weanoruecoco s e e
framework can further improve the
zero-shot performance in most cases.
Besides, although combining hugging
with SOTA baselines yield competi- £
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Figure 3: Multi-dataset (Flickr25K-MSCOCO)
evaluation with different 64-bit UCMH methods.
Transformers and the hugging improve generaliz-
ability and robustness. Besides, HUGGINGHASH
shows the best zero-shot results.

HUGGINGHASH shows the best zero-
shot performance on both datasets. The
reason is that the contrastive learning
objectives help to produce more trans-
ferable hash codes.
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Figure 4: Parameter Sensitivities of a 64-bit HUGGINGHASH model on MSCOCO. Default
settings are marked in bold. The dotted lines mark the MAP results under default settings.

3.3 Model Analyses

Effects of loss terms. We analyze HUGGINGHASH on MSCOCO since it is a benchmark
dataset for vision-language tasks. A is the weight of fine-grained alignment loss Lga that
essentially controls its task gradient strength in the learning process. Adjusting A from O to
0.2 can boost the performance, verifying that Lga is beneficial. However, we can see the
gain drops as we increase A beyond 0.2. This is because the auxiliary task of fine-grained
alignment dominates the learning and even adversely constricts the main task of aligning
hash codes. y controls the strength of regularization Rgyan;. A proper range for yis 0.5 ~ 1.

Effects of T and N.. Figure 4(c) illustrates the effect of the temperature 7 factor in con-
trastive learning. A suitable range for 7 is 0.2 ~ 0.25. Figure 4(d) shows the effect of active
cluster (i.e., latent concept) number N, in GhostVLAD. 15 and 7 are reasonable choices for
N.. We set N, = 7 by default for the higher training efficiency.
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Effects of used transformers. We equip Table 3: Retrieval mean average precision
HUGGINGHASH with different transform- (MAP@AII) results on MSCOCO. ‘Use Tr’
ers [1, 36, 37, 46, 51, 62]. Figure 4(e) means whether the variant uses transformers.
and (D ShOW that large BERT [7] and Method Use Tr Hugging T2I Retrieval 12T Retrieval
ROBERTa [36] Variarlts are OOd Choices fOr 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
; . g 0.562 0.566 0.573 0.555 0.561 0.564
the text transformer. Swin Transformer [37]  psrec 301 v 0.592 0.605 0.602 0.594 0.603 0.611

isa gOOd choice for image encoder. v v 0611 0.613 0.616 0.610 0.619 0.630
0.573 0.578 0.584 0.572 0.575 0.579

. . . e DIJSRH [50] v 0.623 0.621 0.627 0.619 0.624 0.627
Hugging with existing methods. Apart v v 0637 0.626 0.628 0.630 0.634 0.637
from Figure 3, we demonstrate the effec- 0.606 0.599 0.620 0.598 0.589 0.609
. . DSAH [60] v 0.641 0.636 0.642 0.637 0.639 0.648
tiveness of transformers and the hugging v v 0656 0.659 0665 0669 0.663 0.670

framework on SOTA methods in Table 3. 0.594 0.603 0.616 0.587 0.594 0.612
We can see consistent improvements. Be- 9N
sides, SOTA methods surpass HUGGING-
HASH when equipped with hugging. This
is reasonable because they use more com-
plex global alignment mechanisms.

0.633 0.644 0.650 0.631 0.636 0.644

HUGGINGHASH v 0.652 0.661 0.663 0.646 0.653 0.662

4 Related Work

Unsupervised Cross-modal Hashing (UCMH). Traditional UCMH methods learned to
transform hard-craft features [38] into binary codes by solving linear problems, e.g. matrix
factorization [8, 19, 70] and spectral decomposition [24, 49]. The shallow features and
linear solutions limited the performance. In contrast, by leveraging deep neural networks
(DNNs), deep UCMH methods can capture richer semantic information and generate better
hash codes. Early deep methods [16, 17, 59] replaced the hand-crafted features with the deep
features and applied linear solutions as in some shallow methods [19, 24, 49, 71]. To better
estimate pairwise similarity to guide hashing learning, later deep methods [33, 50, 56, 60,
63, 68] fused similarity matrices from different modalities during training. Besides, some
recent deep methods tried to narrow the modality gap by using adversarial learning [26, 66,
67] or knowledge distillation [18, 27], showing promising results. Note that existing deep
methods mainly used classic VGGNets [48] or AlexNet [23] to extract visual features and
used MLPs to encode text information, which suffered from inadequate semantic extraction
and limited the representation quality. Instead, we take the first step to study the effectiveness
of transformers on UCMH, which is a good practice learned from the recent successes in the
deep learning community. We also explore how to use transformers for UCMH better.

Transformers in Multimedia Retrieval. Recently, transformers [52] have made remark-
able progress in CV [4, 9, 37] and NLP [7, 36, 62] tasks, triggering the surge toward better
multimedia understanding. In cross-modal retrieval, the great potential of transformers has
also been explored [47]. Most dual-stream methods [11, 12, 34, 43, 45, 58, 61] aligned the
global representation tokens (e.g. “[CLS]”) with metric learning [35] or contrastive learn-
ing [5]. To reduce the modality gap further, several works [40, 54, 57] proposed to align
fine-grained representations extracted from the content tokens, showing better performance
but lower efficiency due to the complex similarity computations in inference. Different from
them, we design fine-grained alignment as an auxiliary task to improve hashing learning and
remove it in inference. It demonstrates effectiveness while maintaining efficiency.
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In the specific field of hashing-based retrieval, recent advances in image [6, 10, 13, 29,
39] and video hashing [15, 28, 65] have also revealed the effectiveness of uni-modal trans-
former hashing. In contrast, the cross-modal scenario is still under-explored. We believe our
work can fill the blank and serve as a research basis for this promising direction.

5 Conclusions

This paper studies the novel and practical problem of transformer-based unsupervised cross-
modal hashing (UCMH). We propose a hugging framework that unifies multi-granularity
cross-modal alignment as solid self-supervision for hashing learning. We present HUG-
GINGHASH as an instantiation and show its advantages on three benchmark datasets. We also
show that hugging is compatible and beneficial with existing UCMH methods when choos-
ing transformers as the backbones. Our work provides a research basis for the promising
direction of transformer-based UCMH. Future work includes integrating multi-granularity
representations to generate high-quality hash codes.
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