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Supplementary Materials for Data Augmentation-free
Unsupervised Learning for 3D Point Cloud Understanding

A Algorithm
Here, we provide a pseudo-code for SoftClu training loop in Algorithm 1.

Algorithm 1 Soft clustering (pseudocode).
Input: {P} a set of 3D point clouds and each point cloud has N points; K number of optimization

steps.
Output: the backbone fϕ pretrained by using our algorithm.

1: for i in range(0, K) do
2: Ltot = 0
3: for P ∈ {P} do
4: # compute class scores
5: SSS = softmax

(
φα

(
fϕ (P)

))
6: # compute prototypes

7: CCCE =
{

1
∑

N
i=1 si j

∑
N
i=1 si j pppi

}N

j=1

8: CCCF =
{

1
∑

N
i=1 si j

∑
N
i=1 si j fff i

}N

j=1
9: # compute DDD

10: DDD =
{

λ∥pppi− cccE
j ∥2

2 +(1−λ )∥ fff i− cccF
j ∥2

2

}N,J

i, j
11: # compute γ

12: ΓΓΓ = SINKHORN(stopgrad(DDD) ,1e−3,20)
13: γγγ = N ·ΓΓΓ
14: # compute loss
15: Ltot += Lso f t + ηLorth
16: end for
17: # update backbone and segmentation head
18: fϕ ,φα ← optimize

(
Ltot
N

)
19: end for
20: return fϕ

For the Sinkhorn-Knopp algorithm, we provide a detailed pseudo-code in Algorithm 2.

B Downstream Tasks Setups
Classification. We use ModelNet40 [40] and ModelNet10 [40] benchmark classification
datasets. ModelNet40 is composed of 12331 meshed models from 40 object categories, split
into 9843 training meshes and 2468 testing meshes, where the points are sampled from CAD
models. ModelNet10 dataset contains 4899 pre-aligned shapes from 10 categories with 3991
(80%) shapes for training and 908 (20%) shapes for testing. For SVM training, we randomly
sample 1024 points for each shape as in [39].
Part segmentation. We follow [46] and use the ShapeNetPart [52] benchmark dataset that
contains 16881 objects of 2048 points from 16 categories with 50 parts in total. We train the
linear fully connected layer for 100 epochs by using the AdamW [27] optimizer with batch
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Algorithm 2 Sinkhorn-Knopp algorithm (pseudocode).
Input: D distance matrix, ε = 1e−3 and niters iterations.
1: function SINKHORN(DDD, ε , niters)
2: ΓΓΓ = exp(DDD/ε)
3: ΓΓΓ/= sum(ΓΓΓ)
4: N,J = ΓΓΓ.shape
5: uuu,µµµ,ννν = zeros(N),ones(N)/N,ones(J)/J
6: for _ in range(0, niters) do
7: uuu = sum(ΓΓΓ, dim=1)
8: ΓΓΓ∗= (µµµ/uuu).unsqueeze(1)
9: ΓΓΓ∗= (ννν/sum(ΓΓΓ,dim=0)).unsqueeze(0)

10: end for
11: return ΓΓΓ

12: end function

size of 24, initial learning rate of 0.001, learning rate decay of 0.5 every 20 epoch. We report
the overall accuracy (OA) and the mean class intersection over union (mIoU) to evaluate
segmentation quality as in [46].
Semantic segmentation. We evaluate SoftClu features on semantic segmentation by using
the S3DIS [3] benchmark dataset. S3DIS consists of 3D scans collected with the Matterport
scanner in six indoor areas, featuring 271 rooms and 13 semantic classes. Following the pre-
processing, post-processing and training settings as in [46], we split each room into 1m×1m
blocks and use 4,096 points as the model input. For PointNet and DGCNN, we finetune the
pre-trained model on areas 1,2,3,4,6 and test them on area 5. As in part segmentation, we
report OA and mIoU to quantify the segmentation quality.

For SR-UNet backbone, we finetune the pre-trained model on areas 1-4 and 6 and test
them on area 5. The fine-tuning experiments are trained with a batch size of 48 for a total of
10K iterations. The initial learning rate is 0.1, with polynomial decay with a power of 0.9.
We set voxel size as 0.05 (5cm) and weight decay as 0.0001. We report mIoU and mAcc to
evaluate segmentation quality as in [49].

C More Results
Part segmentation visualizations. Figure 4 shows examples of qualitative part segmenta-
tion results obtained with SoftClu after the fine-tuning on the downstream task compared to
ground-truth annotations (GT). We can observe that our method provides consistent predic-
tions throughout shapes, also in the case of complex shapes (chair and motorcycle).

Few-shot learning. Few-shot learning (FSL) aims to train a model that generalizes with
limited data. We conduct FSL (N-way K-shot learning) for the classification task on Mod-
elNet40 [40] and ModelNet10 [40] benchmark datasets, where the model is evaluated on N
classes, and each class contains N samples. We use the same setting and train/test split as
OcCo [46] and CrossPoint [2] and report the mean and standard deviation across 10 runs.
Table 7 shows the FSL results on ModelNet40, where SoftClu outperforms prior works in
all the FSL settings in the DGCNN backbone. Our method with PointNet backbone per-
forms slightly poorly in 5-way 10-short and 10-way 20-short settings compared to results of
CrossPoint with PointNet.

Citation
Citation
{Wang, Liu, Yue, Lasenby, and Kusner} 2020

Citation
Citation
{Armeni, Sener, Zamir, Jiang, Brilakis, Fischer, and Savarese} 2016

Citation
Citation
{Wang, Liu, Yue, Lasenby, and Kusner} 2020

Citation
Citation
{Xie, Gu, Guo, Qi, Guibas, and Litany} 2020

Citation
Citation
{Sharma, Grau, and Fritz} 2016

Citation
Citation
{Sharma, Grau, and Fritz} 2016

Citation
Citation
{Wang, Liu, Yue, Lasenby, and Kusner} 2020

Citation
Citation
{Afham, Dissanayake, Dissanayake, Dharmasiri, Thilakarathna, and Rodrigo} 2022



16 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

Table 7: Few-shot object classification results on ModelNet40. We report mean and standard
error over 10 runs. Top results of each backbone is bold.

Encoder Method
5-way 10-way

10-shot 20-shot 10-shot 20-shot

PointNet

Rand 52.0 ± 3.8 57.8 ± 4.9 46.6 ± 4.3 35.2 ± 4.8
Jigsaw [39] 66.5 ± 2.5 69.2 ± 2.4 56.9 ± 2.5 66.5 ± 1.4
cTree [41] 63.2 ± 3.4 68.9 ± 3.0 49.2 ± 1.9 50.1 ± 1.6
OcCo [46] 89.7 ± 1.9 92.4 ± 1.6 83.9 ± 1.8 89.7 ± 1.5
CrossPoint [2] 90.9 ± 4.8 93.5 ± 4.4 84.6 ± 4.7 90.2 ± 2.2
SoftClu 90.6 ± 4.0 93.8 ± 3.2 84.7 ± 3.6 90.1 ± 4.5

DGCNN

Rand 31.6 ± 2.8 40.8 ± 4.6 19.9 ± 2.1 16.9 ± 1.5
Jigsaw [39] 34.3 ± 1.3 42.2 ± 3.5 26.0 ± 2.4 29.9 ± 2.6
cTree [41] 68.4 ± 3.4 71.6 ± 2.9 42.4 ± 2.7 43.0 ± 3.0
OcCo [46] 90.6 ± 2.8 92.5 ± 1.9 82.9 ± 1.3 86.5 ± 2.2
CrossPoint [2] 92.5 ± 3.0 94.9 ± 2.1 83.6 ± 5.3 87.9 ± 4.2
SoftClu 93.6 ± 3.3 97.3 ± 2.0 89.1 ± 1.4 93.2 ± 3.4
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Figure 4: Part segmentation results on ShapeNetPart [52] of SoftClu using the DGCNN
encoder (top row) compared to the ground-truth annotations (bottom row).

Batch size. Contrastive methods mine negative examples from the mini-batch can suffer
from performance drops when their batch size is not sufficiently large [17]. Because SoftClu
does not rely on negative examples, we expect it to be more robust to smaller batch sizes
when compared to the contrastive approaches. We empirically show the effect of different
batch sizes by comparing the performance of SoftClu with SimCLR [10]. We variate batch
sizes from 8 to 48 during pre-training. Table 8 shows that SimCLR experiences degradation
of performance when the batch size is 8, likely due to the small number of available negative
samples. By contrast, SoftClu maintains a fairly stable performance throughout different
batch size configurations.

Computation of soft-labels. We assess our strategy for soft-label assignment based on
optimal transport (OT) by comparing it with a typical L2 distance-based approach on Model-
Net40 and ModelNet10. Therefore, we assess SoftClu by using Γ computed with Eq. (7) and
by using the L2 approach in [6]. Table 9 shows that OT achieves the best performance on
all the datasets with both PointNet and DGCNN encoders. This is due to the equal partition
constraint in Alg. 2 which prevents solutions from being assigned to the same cluster and
affecting the performance.
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Table 8: Ablation study results of SoftClu by using DGCNN on ModelNet10 with different
batch sizes during pre-training.

Encoder Method 8 16 24 32 40 48

PointNet SimCLR 87.5 88.0 88.2 88.1 88.5 88.4
SoftClu 89.9 89.8 90.2 90.3 90.1 89.9

DGCNN SimCLR 88.6 89.3 89.4 89.7 89.7 90.1
SoftClu 91.6 91.8 91.7 91.9 91.9 91.8

Table 9: Ablation study of SoftClu on ModelNet40 and ModelNet10 with soft-labels computed
with our approach (OT) and with a typical distance-based assignment (L2).

Dataset Encoder Accuracy
L2 OT

ModelNet10 PointNet 91.5 93.4
DGCNN 94.1 94.8

ModelNet40 PointNet 86.5 90.3
DGCNN 90.4 91.9

SoftClu with Transformer backbone. Following [25] setups, we also provide the results
with the recent Transformer backbone provided by [25]. As shown in Tab. 10, SoftClu also
achieves competitive result.

Table 10: Classification results with a Transformer backbone on ModelNet40.
Encoder SoftClu PointViT-OcCo [46] Point-BERT [54] MaskPoint [25]
SoftClu 93.8 92.1 93.2 93.8
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