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ever, uniformly process multiple views without delving deep into the relationships among
views, while we leverage a probabilistic approach to exploit the content-based relationships.
The video SSL method [27] designs a loss function in a probabilistic manner. The method
describes view sample distribution by means of parametric distribution in contrast to our
kernel-density estimation, and it combines an instance discrimination and uncertainty mini-
mization in a rather heuristic way while we unify the discriminative and generative models
in a theoretical way via mutual conditional probability.

2 Method
To cope with multiple view samples drawn from an image, we model them in a probabilistic
manner similarly to unsupervised clustering [9]. Then, mutual conditional probability is
introduced to enhance the compactness and separability of the distribution, both of which
contribute to view-invariance and sample discrimination in self-supervised learning (SSL).

2.1 Probabilistic models
2.1.1 Generative probability distribution: p(z|I)

Suppose we have M view samples {xxxi}M

i=1, each of which is a d-dimensional feature vector
extracted from one view of an input image I. The probability density function over those
samples is approximated by means of a kernel density estimation (KDE) [32] as

p(zzz|I) = 1
MCs

M

Â
i=1

exp
⇣
� 1

2s2 kzzz� xxxik2
2

⌘
, (1)

which contains a bandwidth parameter s and a normalization constant Cs . We use the probe
point zzz 2 Rd to explore the feature space of xxx, which will be instantiated in Sec. 2.2 for
SSL. The modes, local maxima points, of p(zzz|I) are obtained through considering the log-
probability gradient of

s2— logp(zzz|I) =
ÂM

i=1 exp(� 1
2s2 kzzz� xxxik2

2)xxxi

ÂM

i=1 exp(� 1
2s2 kzzz� xxxik2

2)
� zzz = MSp(zzz|I)(zzz), (2)

which is a mean-shift (MS) vector [9] pointing to the local maxima around zzz. The mean-shift
vector normalized by the probability p(zzz|I) effectively seeks local modes [9], by iteratively
updating the probe point zzzi starting from xxxi as

zzz
0
i
= xxxi, zzz

t+1
i

= zzz
t

i
+MSp(zzz|I)(zzz

t

i
) = zzz

t

i
+s2— logp(zzzt

i
|I). (3)

Convergent point zzz
•
i

indicates the local mode to which the sample xxxi belongs. We can find
modes {zzz

•
i
}N

i=1 in an unsupervised manner without assigning sub-clusters to samples nor
predefining number of modes. It is noteworthy that the mean-shift mode seeking is equivalent
to minimizing the objective loss `gen(zzz) =�s2 logp(zzz|I)) —zzz`gen =�MSp(zzz|I)(zzz).

2.1.2 Discriminative probability distribution: p(I|z)

The view-sample distribution (1) on an image I is modeled in a generative way via KDE,
lacking discrimination among images. In SSL, a view sample is usually associated with
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Figure 3: Comparison of three probabilistic models. I and Ǐ are target and other images,
respectively, and indicates increase of probability while means decrease.

one of B images {Ib}B

b=1 to construct a set D = {(xxxi,yi)}N

i=1 with a label yi 2 {I1, · · · ,IB}
indicating an image index; |D|= N = MB. Similarly to the procedure in Sec. 2.1.1, we can
pursue discriminative points as follows. From the Bayesian viewpoint, the discriminative
point is defined to maximize the posterior, argmaxzzz p(I|zzz), of

p(I|zzz) = p(zzz|I)
p(zzz)

µ
Âi|yi=I exp(� 1

2s2 kzzz�xxxik2
2)

ÂN

i=1 exp(� 1
2s2 kzzz�xxxik2

2)
, (4)

where we assume uniform prior p(I). It leads to the following loss and gradient,

`disc(zzz) =�s2 logp(I|zzz) ) —zzz`disc =�MSp(zzz|I)(zzz)+MSp(zzz)(zzz). (5)

The gradient is based on difference between two mean-shift vectors of p(zzz|I) and p(zzz). The
discriminative point is obtained by updating the probe point zzzi to minimize the loss (5),

zzz
0
i
= xxxi, zzz

t+1
i

= zzz
t

i
+s2—zzz logp(yi|zzzt

i
), (6)

where the class category is the one assigned to xxxi, i.e., I = yi in (5). Compared to (3),
it renders discriminative representation by considering difference from distributions of the
other images, in a similar fashion to contrastive learning [15].

2.1.3 Mutual conditional probability: p(z|I)p(I|z)

From the perspective of minimizing losses, the generative probability p(x|I) on an image I
effectively measures compactness of the distribution while being agnostic on separability; as
shown in Fig. 3, the generative loss `gen =�s2 logp(zzz|I) is decreased as the distribution on
I becomes compact, in disregard of the other distributions (images). On the other hand, the
discriminative probability p(I|zzz) cares about separability among distributions while paying
less attention to the compactness of the distribution; it is sensitive to overlap between dis-
tributions as shown in Fig. 3 no matter how they are compact. In the literature of feature
representation learning, those compactness and separability are related to robustness and
discrimination of features, both of which are important to improve feature representation.

In this work, we incorporate those two factors into a loss by means of mutual conditional

probability [1, 4] in our probabilistic framework (Sec. 2.1.1&2.1.2). The mutual conditional
probability is defined as p(zzz|I)p(I|zzz) which is the combination of generative and discrimi-
native probabilities, thereby effectively unifying the factors of compactness and separability
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which are respectively addressed in those models as described above. In other words, it mea-
sures strength of coupling two components of an image I and view sample zzz; obviously, it is
maximized if there is one-to-one correspondence between I and zzz. The mutual conditional
probability has been applied in a text mining literature [1, 4] to measure distinctiveness of
words. Our probabilistic framework in Sec. 2.1.1&2.1.2 enables us to introduce the model
into SSL by formulating the proposed loss as

`(zzz) =�s2 log[p(zzz|I)p(I|zzz)] = `gen(zzz)+ `disc(zzz), (7)

) zzz
0
i
= xxxi, zzz

t+1
i

= zzz
t

i
+s2—zzz log[p(zzzt

i
|yi)p(yi|zzzt

i
)]. (8)

Fig. 3 summarizes characteristics of the above-mentioned three probabilistic models. While
the generative and discriminative probabilities lack sensitivity to either one of two factors,
respectively, the proposed model favorably recognizes the compact and separable distribu-
tion; the bandwidth parameter s controls those compactness and separability, as discussed
in Sec. 2.3. Thus, our loss contributes to enhancing feature representation of SSL in terms
of view invariance as well as image-wise discriminativity, which are related to invariance
against image perturbation and discrimination power for image class categories.

2.2 Self-Supervised Learning
We then connect the probabilistic model (Sec. 2.1.3) to self-supervised learning (SSL); the
architectural overview is shown in Fig. 2. In a modern SSL framework [5, 7, 8, 12, 14], an
image is viewed in multiple ways via data augmentation processes to produce multiple view

samples on which neural networks are effectively trained in a contrastive [5] or matching [14]
way without external supervision. Following the successful encoding architecture [5], each
view sample is embedded in d-dimensional feature space via xxx = j �f(I)2Rd with a pro-
jection head j and a backbone feature extractor f , such as CNN [16], to be trained in SSL.

In this work, we apply the approach in Sec. 2.1 to probabilistically analyze the multi-view
samples. Through M random transformations {ti}M

i=1, a source image I generates a set of M

view samples {xxxi = j �f(ti(I))}M

i=1 on which the probabilistic distribution is constructed.
We draw B image instances {Ib}B

b=1 usually packed in a mini-batch B to provide N = BM

samples in total. The gradient-based update related to mean shift finds a local mode zzz
⇤ on

I to achieve robust representation against the transformations of {ti}i|zzz•
i
=zzz⇤ that converge to

the mode. Such a robust representation describes characteristics shared among those view
images, which would be connected to an object shown in an image I. Our loss (7) also en-
dows the robust representation with discriminativity among images {Ib}B

b=1. For effectively
learning representation, we tailor the formulation (Sec. 2.1.3) toward SSL as follows.

In mean shift procedure [9], the probe point zzzi is associated with the sample xxxi only
through the initialization zzz

0
i
= xxxi in (8). To efficiently update representation j � f in SSL,

we associate xxxi with the probe point zzzi more directly by means of non-linear projection y
as zzzi = y(xxxi) = y �j � f(ti(I)) in accordance with a prediction head [14]. Thereby, the
iterative update in (8) is transformed into the update of the projection y in an end-to-end
learning which also improves xxxi via updating f and j . The rapid update of the view sample
xxxi, however, is inconsistent with a stationarity assumption of the distribution (1) on I. To
mitigate it, we apply the momentum models f̄ and j̄ , exponential moving average [30] of
f and j as in [7, 8, 14, 17], to gradually update samples while stopping back-propagation
on them [6]; so generated view samples are denoted as {x̄xxi = j̄ � f̄(ti(I))}M

i=1. For stable
learning on an image I, the probe zzzi explores over M�1 view samples of {x̄xx j} j 6=i excluding
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Figure 2: Our SSL architecture. Back-prop
goes through the solid (cyan) line, while the
dashed ones indicate stop-gradient [6].

and random augmentation process likely produces a inconsistent pair of views connected to
different image contents (Fig. 1), while SSL has paid less attention to the contents of views.

In this paper, we introduce a probabilistic framework for multiple view samples. In
contrast to the pair-wise approaches, multiple view samples are modeled by means of ker-
nel density estimation (KDE) [32] to cope with a multi-modal probabilistic distribution in
which inconsistent view samples would form different modes (Fig. 1). Thereby, a mode in
the distribution indicates robust representation of image content, leading to representation
learning in SSL. In the probabilistic framework, we build a novel SSL loss based on mutual

conditional probability on the distribution. The mutual conditional probability contributes
to compact and discriminative feature representation which are favorable for SSL. The pro-
posed method can also be viewed as a unified approach of the other SSL methods in the
probabilistic framework.

1.1 Related works

Image-based pretext tasks. Instead of manual supervision, pretext tasks are constructed to
provide annotation-free criteria or losses for guiding models to capture effective character-
istics of image contents. Those tasks are, for example, to solve Jigsaw puzzle [25], estimate
image rotation [13], predict spatial order [18], transform feature maps [26] and fill in missing
image region (inpainting) [28]. In the pretext tasks, losses are formulated as in supervised
learning for classification and regression, according to the manually designed criterion.
Feature-based pretext tasks. There are also approaches to go into the details of feature
distribution. On the assumption that a training dataset contains no duplicated image, instance
discrimination [11, 34] imposes sample-wise classification tasks. Such a fine-grained task is
relaxed via clustering to form classification over clusters [2, 37], and the cluster assignment
is improved so as to be compatible with mini-batch training [3, 29].
Pair-wise matching. Without pseudo labeling such as via cluster assignment, pair-wise
matching is effectively applied to a Siamese framework [15] with data augmentation tech-
niques. Data augmentation derives two view images from a source image as a positive pair
to be contrasted with negative pairs drawn from different instances in a contrastive loss [15].
One can see some architectural advances of the approach in [5, 7, 8, 17] as well as asymmet-
ric encoding architectures [14] to remarkably exclude the negative pairs in a matching loss;
it is analyzed such as through a stop-gradient technique [6]. The pair-wise approaches, how-
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x̄xxi which is so close to zzzi as to impede MS-based update by dominating the probability (1) for
small s . Toward effective SSL, both the view sample x̄xx and the probe vector zzz are normalized
by L2 norm; such a normalization is compatible with mean shift in a vMF framework [21].
In summary, our method (7) produces the following SSL loss; for the probe zzzbi,

`SSL(zzzbi) =�2T log
M

Â
j=1| j 6=i

exp
⇣

zzz
>
bi

x̄xxb j/T

⌘
+T log

B,M

Â
c=1, j=1|c 6=b_ j 6=i

exp
⇣

zzz
>
bi

x̄xxc j/T

⌘
, (9)

) min
y,f ,j


1

BM

B

Â
b=1

M

Â
i=1

`SSL

✓
y �j �f(tbi(Ib))

ky �j �f(tbi(Ib))k2

◆�
, (10)

where the bandwidth parameter s is re-parameterized into a conventional softmax tempera-
ture T = s2. The set of transformation {tbi}M

i=1 is randomly drawn by data augmentation for
the image Ib to provide feature embedding zzzbi = y �j �f(tbi(Ib)) and x̄bi = j̄ � f̄(tbi(Ib)).

2.3 Discussion
Connection to other SSL losses. In case of two views, M = 2, our losses are reduced to

`gen(zzzb1)=�T logexp
⇣

zzz
>
b1x̄xxb2

T

⌘
=�zzz

>
b1x̄xxb2, `disc(zzzb1)µ�log

exp(zzz>
b1x̄xxb2/T )

ÂB,2
c6=b_ j 6=1 exp(zzz>

b1x̄xxc j/T )
, (11)

which are based on comparison between zzzb1 = y �j �f(tb1(Ib)) and x̄b2 = j̄ � f̄(tb2(Ib)).
The generative loss `gen is equivalent to BYOL [14], while the discriminative one `disc is
related to contrastive loss of MoCo-v3 [8]. It is noteworthy that the two distinctive losses
of `gen and `disc are unified in our probabilistic framework by means of mutual conditional
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Table 2: Performance comparison (acc. %) of various probabilistic models (Sec. 2.1) with
various temperatures on ImageNet-100 using 4 views of 160⇥160 image patches (Table 1).

(a) Linear evaluation (b) k-NN evaluation
Model T = 0 1 • T = 0 1 •

GENPRO p(zzz|I) 79.24 81.38 80.90 71.50 73.38 72.98
DISCPRO p(I|zzz) 17.86 81.56 81.08 16.58 73.46 73.38

MUCONPRO p(zzz|I)p(I|zzz) 78.38 81.64 81.50 70.16 74.06 74.00

Table 3: Top-1 accuracy (linear eval.) on ImageNet with 100-epoch training.
Model Acc. (%) Model Acc. (%)

SimCLR [5] 66.5 Supervised [16] 76.2

BYOL [14] 66.5 SwAV [3] 72.1
MoCo-v2 [7] 67.4 MS-SSL [22] 72.4
MoCo-v3 [8] 68.9 GENPRO p(zzz|I) 70.9
SimSiam [6] 68.1 DISCPRO p(I|zzz) 72.1
W-MSE [12] 69.4 MUCONPRO p(zzz|I)p(I|zzz) 72.9

As discussed with Fig. 3, it incorporates compactness and discriminativity, contributing to
robustness for the higher temperatures T � 1. It should be noted that GENPRO with T = •
corresponds to the recent SSL approach [22] which simply sums up pair-wise BYOL loss.

3.2 Performance comparison

ImageNet. We then evaluate performance on the large-scale ImageNet dataset which is a
standard benchmark dataset for 1K-category classification. We perform SSL on the training
set to train backbone f of ResNet-50 [16] over 100 training epochs following the proto-
col [6]. For evaluation, a linear classifier is trained on top of the frozen backbone on the
annotated training set to measure classification accuracy on the validation set.

Performance comparison is shown in Table 3 including our three methods of GENPRO,
DISCPRO, MUCONPRO. In comparison to Table 2 on ImageNet-100, GENPRO is inferior
to the other two methods in this ImageNet-1K which is 10-times larger than ImageNet-100.
Through increasing diversity of training image samples, the discimination part in DISCPRO
and MUCONPRO works better by contrasting various images to learn discriminative features,
compared to the generative one (GENPRO) which only considers view distribution within an
image.

The proposed MUCONPRO also outperforms the other methods on the ImageNet dataset,
approaching even to the supervised one which is also trained over 100 epochs. It produces
superior performance to the baselines of BYOL [14] and MoCoV3 [8] and even to their
multi-view extension, GENPRO and DISCPRO, in our framework (Sec. 2.1). The method is
also competitive with SwAV which is based on clustering over multiple views of smaller-
sized image patches [3]. These results demonstrate that the proposed method effectively
leverages our probabilistic model to extract image characteristics shared among multiple
view samples in the SSL framework. In this ImageNet task, our method produces favorable
performance simply by 100-epoch training with a small batch size of 256 only on 4 NVIDIA
V100 GPUs; it implies the feasibility of SSL even on limited computational resources with-
out high-performance GPU clusters.
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Table 1: Performance comparison (acc, %) on various approaches to produce multiple views.
Smaller crop size

224 160

: momentum sample: probe sample

128 96

probe

sample

view image

views 2 · (224⇥224) 4 · (160⇥160) 6 · (128⇥128) 11 · (96⇥96)

linear 77.94 81.64 81.30 79.20
k-NN 68.90 74.06 73.82 71.54

Memory bank Momentum-free Costly approach

224 224

: k-NN sample : projection sample

memory bank
224

probe

sample

view image

views 2-NN samples 2 projection samples 4 · (224⇥224)

linear 78.04 78.68 81.12
k-NN 69.94 69.86 73.54

the larger-sized image patch enriches the feature representation of a view sample. The ap-
proach of M = 4 to crop 4 · (160⇥160) patches well balances those two factors; the image
size of 96⇥96 is too small to extract meaningful features and M = 2 views in 2 ·(224⇥224)
fails to cover various image parts. Therefore, we apply M = 4 views cropping 160⇥ 160
patches, exhibiting superior performance even to the costly approach of 4 · (224⇥224). The
larger view patch of 224⇥224 contains various image characteristics but is likely overlapped
with the other views degrading diversity (variance) of view distribution. The approach of
4 · (160⇥ 160) provides favorably diverse view distribution with effective feature represen-
tation xxx.

3.1.2 Probabilistic models with temperature

We compare the probabilistic models in Sec. 2.1. There are three types of models, genera-
tive probability (GENPRO) p(zzz|I), discriminative probability (DISCPRO) p(I|zzz) and mutual
conditional probability (MUCONPRO) p(I|zzz)p(I|zzz) which provide the proposed SSL loss
(10) as described in Sec. 2.2. Table 2 shows performance comparison of those models with
various temperatures T .

At the low temperature T = 0, the losses focus on the nearest neighbor samples over
view samples in (13), failing to extract relationships among views; especially, it collapses
the discriminative model DISCPRO. On the other hand, the high temperature T = • blurs
the distribution over views to pay equal attention even to irrelevant views in (12). Thus, the
temperature T = 1 produces favorable performance and the proposed MUCONPRO further
boosts the performance by effectively unifying the generative and discriminative models.

Multiple view samples are probabilistically modeled
by means of kernel density estimation (KDE).

Multiple data augmentations produce  
multiple view samples.

loss

loss

loss

MuConPro effectively describes  
compact & discriminative distribution.

Feature representation is updated by maximizing 
MuConPro toward compact and discriminative ones,
while disregarding irrelevant view samples via KDE.

irrelevant view

Compactness
within image

Discrimination
across images

Analysis by loss gradients.
•            results in BYOL [Grill+20].

We simply apply           .

Multiple view samples are effectively aggregated in a MuConPro
manner which naturally induces compact and discriminative  
feature representation.

EMA

Multiple samples are generated in various ways
in a constant computation budget.
• Cropping small-sized image patches.
• Drawing from external memory bank.
• Processing large-sized patch via momentum-free mode.

Probabilistic models are compared with various    .
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x̄xxb j] which is actually employed as a mean-
shift SSL [22].

On the other hand, the lower temperature T produces sparse distribution where the loss
(9) makes sense only on the nearest-neighbor sample to the probe zzz, excluding all the other
samples which contain both irrelevant and relevant ones;

∂`gen(zzzbi)

∂ zzzbi

=�Â j 6=i exp(zzz>
bi

x̄xxb j/T )x̄xxb j

Â j 6=i exp(zzz>
bi

x̄xxb j/T )
T!0���!�arg max

{x̄xxb j} j 6=i

zzz
>
bi

x̄xxb j. (13)

As a compromise between these extreme cases, we set the temperature T = 1 showing effec-
tiveness in Sec. 3.1.
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