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Abstract

Semantic correspondence is playing an increasingly important role in photorealis-
tic style transfer, especially on objects with prior structural patterns like faces and cars.
Unlike traditional methods that are blind to object/non-object regions and spatial cor-
respondence between objects, we propose a new model called correspondence-driven
object appearance transfer (COAT), which leverages correspondence to spatially align
texture features to content features at multiple scales. Our model does not require ex-
tra supervision like semantic segmentation or body parsing and can be adapted to any
given generic object category. More importantly, our multi-scale strategy achieves richer
texture transfer, while at the same time preserving the spatial structure of objects in the
content image. We further propose the correspondence contrastive loss (CCL) with hard
negative mining during the training, boosting appearance transfer with improved disen-
tanglement of structural and textural features. Exhaustive experimental evaluation on
various objects demonstrates our superior robustness and visual quality as compared to
state-of-the-art works.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Content Style DST [18] SAE [27]/STROTSS [19] COAT

Figure 1: The proposed COAT vs. the state-of-the-art methods. Driven by correspondences estimated
between content and style images, we achieve more accurate transfer of fine-grained texture and object
appearance, while preserving object structure from the content.

1 Introduction
The great success of recent image-to-image translation techniques [12, 13, 36, 42] enables
new classes of image manipulation by injecting the generic visual knowledge drawn from
external exemplar images into a target image, e.g., image inpainting [21, 28], photorealistic
style transfer [13, 25], object replacement [9, 42], etc. These exemplar-driven image ma-
nipulation methods traditionally factorize the visual information into two components, i.e.,
content and style, to re-render the structure of original content image using the style from
one or more style exemplars.

A recent work [27] has shown impressive results by encoding images into disentangled
structure and style latent code. However, their style code, which is a vector without spatial
information, cannot effectively encode local texture information. Therefore, such a global
style code may cause mismatching of local textures and distortion of global structures, espe-
cially for objects with certain structural patterns. More specifically, the global style code is
not rich enough to model fine-grained textures, and it would also stylize the object structure
to fit its global texture, which is not desired in object appearance transfer.

A more promising approach to transfer local textures better is to spatially align the style
image to the content image before style transfer. There have been several works [18, 22] in
this direction, which warp the style image to the content one by pixel-wise correspondences.
However, their transfer results heavily rely on the quality of the correspondences. For in-
stance, their performance will degrade drastically if encountering larger appearance and/or
geometry variations between content and style inputs.

To alleviate the aforementioned limitations, we propose a new model called correspondence-
driven object appearance transfer (COAT), which integrates correspondence estimation and
multi-scale style transfer in a unified architecture. By aligning the styles to the content
based on the correspondence at multiple scales, we obtain style and content features that
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(a) Image warping [18, 22]
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(b) Latent swapping [27]
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(c) COAT

Figure 2: Comparison of representative image style transfer methods: (a) image warping method [18,
22], (b) latent swapping method [27], and (c) the proposed COAT. Our key idea is to incorporate
correspondence estimation into the hierarchy of encoder and decoder, which would boost fine-grained
texture transfer and preserve the structure of the objects in the content image at the same time.

encode more spatial and local textural information than the global styling code in existing
works. On the other hand, we utilize the layer-wise representation of StyleGAN [16] where
high-level structural information of content feature are fed to the early layers of the decoder
and low-level textures from aligned style feature to the late ones, thus achieving both ac-
curate object appearance transfer and robust preservation of content structure against large
geometry/appearance variation. Beyond the network design, correspondence also benefits
the disentangling of structural and textural features during training. We further propose the
Correspondence Contrastive Loss (CCL) for mining hard negative samples that are selected
based on correspondences. Hard negatives can help the model avoid coupling of content and
style. Extensive experiments are conducted to demonstrate the superior performance of the
proposed COAT in terms of visual quality and robustness against large geometry/appearance
variation as compared to the state-of-the-art methods.

2 Related Works
Classical approaches for style transfer [7, 11, 19] commonly model the image into style and
content components, encouraging them to specifically characterize the given image visually.
To this end, several works leveraged modern neural networks [2, 14, 35] to measure content
using perceptual distance, and style as global texture statistics, e.g., a Gram matrix. SAE [27]
extended this framework with an autoencoder architecture where the images are encoded into
style and content latent codes and mixed to generate a hybrid image. Despite of the plausible
results, their style code only contains global texture distribution and thus has limited capabil-
ity of transferring fine-grained local textures. Though some methods [18, 22, 32] alleviated
this by leveraging dense semantic correspondences to consider local information, obtaining
precise correspondences for all pixels is extremely challenged, causing the structure of the
result hybrid image not to be consistent to the content image.

In contrast to these methods, our model can achieve both content preservation and local-
ized stylization at the same time, by incorporating the correspondence estimation within the
semantic hierarchy of the autoencoder architecture.

3 Approach
Given a content-style image pair {I1, I2}, we aim to transfer the appearance of the style image
I2 to the content image I1, while at the same time preserving the high-level structure of the
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content image. This objective typically involves two stages: 1) embedding these images
into the latent space through encoders, and 2) synthesizing the transferred image through an
optimization-based algorithm [19, 37] or a decoder [5, 12].

To achieve more precise transfer of local textures, a possible approach [18, 22] (Fig. 2
(a)) is to first align the content and style images by dense correspondence before generating
the transferred image. Starting from extracting the latent maps {F1,F2} ∈ Rh×w×d through
the encoder E, where h, w, and d denote the spatial resolution and channel dimension, pixel-
wise similarity score is computed as a cosine distance,

Si, j =
F1

i ·F2
j

||F1
i || · ||F2

j ||
, S ∈ R(h×w)×(h×w) (1)

where i denotes each pixel on the latent maps. A dense correspondence map is then estimated
by applying existing techniques [1, 17] to this similarity matrix to finally align style and con-
tent images. Although this method could better localize detailed textures than the previous
approaches [7, 19], its performance heavily relies on the quality of correspondence field,
which often suffers from large variations of appearance and geometry. The results in later
experiments (Figs. 6 and 7) demonstrate that this method will show significant degradation
if encountering more drastic geometry variations. By contrast, we utilize correspondence to
align features and generate transferred results through a powerful decoder, as illustrated in
Fig. 2 (c), which more semantically and thus more robustly transfer appearance from style
image to content image.

Meanwhile, a recent work [27] (Fig. 2 (b)) introduced an autoencoder architecture similar
to ours. They learn to disentangle the latent code into structure and texture components, thus
the structure component will mainly carry spatial information and the texture component
will focus on embedding the global texture distribution. The encoders Econ and Esty in Fig. 2
(b) aim to extract content and style/texture related features, respectively. However, the high-
level texture component mostly embeds the global style rather than capturing rich details
from the style image. Therefore, the spatial structure of the final results can be misguided by
the global texture component.

To alleviate the aforementioned limitations, we propose COAT (Fig. 2 (c)) which extracts
multi-scale features and their correspondences for robust style transfer with aligned texture
maps. More specifically, multi-scale features from the content image are considered as the
structure features fed to high-level layers of the decoder. On the other hand, multi-scale
features from the style image are aligned to obtain aligned texture features, which are skipped
to low-level layers of the decoder, providing more fine-grained textures without distorting the
spatial structure from the content image. To further enhance the goal of object appearance
transfer, i.e., greedy texture transfer without structure distortion of the object, we introduce
correspondence contrastive loss (more discussion in Sec. 3.2), where positive and negative
samples for a given query patch are determined based on the correspondences rather than
random policy widely used in existing works [3, 8, 26].

3.1 Network Design

As shown in Fig. 3, COAT can be divided into three sub-modules: 1) latent extraction that
extracts feature maps from input image pair via the encoder E, 2) latent alignment that spa-
tially aligns multi-scale features from the style image to those from the structure input, and 3)
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Figure 3: Overview of the proposed COAT, which consists of three sub-modules, i.e., latent extraction,
latent alignment, and latent decoding. Image features are extracted by the encoder E, the correspon-
dence estimation (highlighted by gray box) is conducted at multiple scales, and manipulated features
are fed to the decode D for generating transferred results.

(a) Content (b) Style (c) Correspondence (l = 2) (d) n = 5 (e) n = 7 (f) n = 9

Figure 4: Visualization of texture control by manipulating the layer index n in the decoder D. A
smaller n results in more aggressive transfer since richer textural information is passed to the decoder.

latent decoding that consumes the structure features and aligned texture feature to generate
appearance transferred image.

Latent extraction accepts an image pair {I1, I2} and extracts their latents leveraging the
hierarchy of the CNN-based encoder E, obtaining multi-scale feature maps, i.e., {F1,l}L

l=1
and {F2,l}L

l=1 from the content and style image, respectively. L denotes the number of scales.

Latent alignment aims to better localize fine-grained textures in the style image. We spa-
tially align the style feature maps to the content feature maps at each scale l by estimating
correspondence between F2,l and F1,l . To this end, we first compute cosine scores follow-
ing Eq. 1 to obtain the similarity matrix Sl . With the presence of the large intra-class ap-
pearance variations, the encoded representation F is not guaranteed to be accurate because
of noisy scores in the similarity matrix Sl . To address this, we apply the widely used soft
consistency criterion [4, 24, 30] to Sl , such that the correspondences between two pixels are
checked forward and backward to determine whether they are consistently correlated. The
similarity score incorporating soft consistency can be expressed in the following.

Ql
i, j =

(
Sl

i, j

)2

maxi Sl
i, j ·max j Sl

i, j
, (2)

where Sl
i, j indicates the score on the l-th scale between the i-th pixel from I1 and j-th pixel

from I2. The Ql
i, j equals 1 if and only if the match between i and j satisfies the forward-

backward consistency constraint, and it will be less than one otherwise. To reduce the effect
from noisy correspondences, we collect a set of sparse but highly confident correspondences
pl = {(i, j)|Ql

i, j = 1}.
Therefore, the alignment from style feature maps to content feature maps can be achieved
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Figure 5: Illustration of the collected negative samples by the proposed correspondence contrastive
loss (CCL). The green dots indicate positive samples, and red dots are hard negative samples selected
based on their correspondence to the query location (blue dot). The gray dots and boxes shows ran-
domly sampled negatives that are much weaker than our selected negatives (red dots).

by swapping the pixels only in pl ,

F̂ l
i =

{
F2,l

j , if (i, j) ∈ pl

F1,l
i , otherwise

, (3)

where F̂ l denotes the aligned style feature map at the l-th scale. Compared to the latent swap-
ping method [27] that embeds the global texture distribution into a vector without spatial in-
formation, our aligned multi-scale feature maps are able to capture and transfer fine-grained
details with higher spatial and visual accuracy.
Latent decoding is conducted with the StyleGAN [16]-based decoder leveraging rich hier-
archical semantics in its layer-wise representations. To this end, we formulate a modulation
encoder Emod that projects feature maps from the previous step (latent alignment) to the vec-
tors to modulate layer in D. Given multi-scale content feature maps and aligned style feature
maps {F1,l , F̂ l}L

l=1, we synthesize a hybrid image through Emod and D. To preserve the
structure from the content image, the content feature maps are fed to the first n modulation
layers of D. At the same time, to transfer high-fidelity textures from the style image, the rest
layers of D are modulated by the aligned style feature maps. The finally transferred image
I2→1 is obtained by

I2→1 = D(Emod({F1,l , F̂ l}L
l=1)). (4)

By changing the layer index n in the decoder D, we can provide the content and style
feature maps to different layers of D, smoothly controlling the amount of transferred texture
as exemplified in Fig. 4. Note that the structure of our transferred image is completely
determined by the embedded latent of the content image, i.e., no structural distortion caused
by wrong correspondence. This is a key advantage over previous approaches [18, 22], which
have difficulties in maintaining the original structure due to the noisy correspondences.

3.2 Losses
Reconstruction and regularization losses are adopted following the literature of latent
space learning [29, 34]. The reconstruction loss Lrec includes the commonly used Mean
Square Error (MSE) and LPIPS [40], which learn both pixel-wise and perceptual similarities.
For the regularization loss Lreg, we employ the loss introduced by [34] which encourage the
extracted latent vectors to be smoothly distributed within the latent space of StyleGAN [16].

Correspondence Contrastive Loss (CCL) is proposed to further encourage our networks to
separate the structure from texture/appearance. CCL introduces a novel contrastive loss that
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associates the patches that have a similar structure to each other while disassociating them
from other patches although with similar textures. A recent work [26] attempted to use the
contrastive setting for unpaired image-to-image translation by collecting negative samples
with randomly cropped patches. However, such random negatives cannot efficiently distin-
guish where the textures we are interested in are located, and they often contain background
clutters or occluded regions that would distract the learning process.

Unlike random cropping, the proposed CCL will identify negative samples by ranking
the patches based on the similarity scores estimated in the step of latent alignment. More
specifically, given a query position i and its positive correspondence (i, j) ∈ p, negative sam-
ples n are collected with a threshold γ ,

nl(i, j) = {k|rank(Sl
i, j)> γ,k ̸= i}, (5)

where rank(·) returns the rank of values sorting in the descending order. As illustrated in
Fig. 5, the collected negative samples consistently capture the relevant textures to the given
query position, thereby providing harder negatives than random samples during training.

Finally, we minimize the following objective

LCCL = ∑
(i, j)∈p

− log
Ci,i

∑n(i, j)Ci,n(i, j)+Ci,i
, (6)

where Ci, j = exp((F2→1
i ·F1

j )/(τ · ||F2→1
i || · ||F1

j ||)) and F2→1 = E(I2→1). The superscript l
is omitted for readability. Thus, the total loss can be written as a weighted summation of the
above three losses

L= Lrec +αLreg +βLCCL. (7)

where α and β are parameters to balance these losses.

4 Experiments
We conduct our evaluations on four datasets, i.e., CelebA-HQ [23] for human face, AFHQ [5]
for animal face, Stanford Cars [20] for car, and LSUN [38] for horse. The official train-test
splits of the datasets are used in our training and evaluation, except for the human face where
the FFHQ [15] dataset was used for training. Note that we attempted to compare COAT to the
other correspondence-based transfer methods [39, 41] or StyleGAN2-based image synthesis
methods [6, 10, 33], but their settings are different from us, e.g. distinct domain between in-
put images, which makes the direct comparison infeasible. Please refer to the supplemental
materials for implementation details and more experiments including visual comparisons.

4.1 Results

We evaluate how consistently our method can transfer the texture of the style image while
preserving the structure from the content image. However, due to the subjective nature of
aesthetic properties defining style and content [18, 19], it is challenging to quantitatively
evaluate the performance of appearance transfer. To address this, we follow the protocol
in previous works [18, 22, 27], i.e., a human evaluation study using Amazon Mechanical
Turk (AMT) designed with Two-alternative Forced Choice (2AFC). More specifically, given
our result and that from a certain baseline, the participants are asked to choose which better
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(a) Content (b) Style (c)STROT. [19] (d) DST [18] (e) Star. [5] (f) SAE [27] (g)COAT

Figure 6: Visual comparison of appearance transfer on CelebA-HQ [23] and AFHQ [5] datasets.
Given input pairs of (a) content and (b) style images, transferred results are obtained from (c)
STROTSS [19], (d) DST [18], (e) StarGAN2 [5], (f) SAE [27], and (g) the proposed COAT.

preserves the content and which better transfers the style, respectively. Moreover, we further
ask which they like better overall.

As reported in Table 1, the collected 20,000 user votes over five baselines and four
datasets demonstrate that our method outperforms all baseline methods in texture trans-
fer. All numbers in the Texture column are greater than 50, which means that over half
of the users prefer our results as compared to the other methods. For structure preservation,
WCT2 gets more votes, i.e., 46.9% users vote us and 53.1% vote WCT2. The reason is that
WCT2 tends to keep the image structure and only change color. Visual comparisons in Fig. 7
demonstrated the limited texture transfer capacity of WCT2. For the overall evaluation, the
proposed COAT outperforms all baselines.

The qualitative comparisons in Figs. 6 and 7 show our advantages over the baselines
in object structure preservation and accurate texture transfer. Only encoding global texture
distribution like SAE [27] fails to capture fine-grained local texture. For content preservation,
the methods based on image warping, e.g., WST [22] and DST [18], are difficult to maintain
the structure from content image due to inaccurate correspondence estimation. While our
method slightly lags behind WCT2 that modifies only minor style changes for a photorealistic
stylization, the performance of WCT2 on style preservation is on the contrary far behind our
method.

4.2 Ablation Studies
To examine the effects of our key components, i.e., latent alignment and correspondence con-
trastive loss (CCL), we conduct a series of ablation studies for appearance transfer task on
CelebA-HQ dataset [23]. We adopt Self-similarity Distance [19] and Single-Image FID [31]
to measure the distance of two images in content and style, respectively. The self-similarity
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(a) Content (b) Style (c)WCT2 [37] (d) STROT. [19] (e) DST [18] (f) WST [22] (g) COAT

Figure 7: Visual comparison of appearance transfer on Stanford Cars [20] and LSUN Horse [38]
datasets. Given input pairs of (a) content and (b) style images, transferred results are obtained from (c)
WCT2 [37], (d) STROTSS [19], (e) DST [18], (f) WST [22], and (g) the proposed COAT.

Methods Preference of COAT in terms of
Structure Texture Overall

DST [18] 69.4 72.5 83.0
WST [22] 77.8 73.1 91.3
WCT2 [37] 46.9 64.7 63.8
STROTSS [19] 63.3 68.9 73.2
SAE [27] 63.0 57.8 71.8
COAT w/o align 48.1 70.8 69.7
COAT w/o CCL 72.7 63.3 78.7

Table 1: User study for appearance transfer and
ablation studies. Each number indicates the per-
centage of users that prefer our results as com-
pared to the corresponding method in the left col-
umn. A number over 50 means our results are
visually better.

0.11 0.12 0.13 0.14 0.15 0.16

40

45

50

55

60

65

70

w/o CCL & align.

Figure 8: Ablation studies for removing the
CCL and/or latent alignment (align). Each curve
is created by iterating n, a larger n will result in
less texture transfer (large single-image FID) and
higher structure fidelity (smaller self-similarity
distance). A curve closer to the bottom-left in-
dicate better performance.

Distance computes the self-similarity map of the features extracted from a pretrained net-
work. The single-image FID calculates the Frechet Inception Distance (FID) between two
feature distributions of given image pair. We also conducted user studies on the four datasets.

The effects of latent alignment. As reported in the user study as shown in Table 1 (the row
of COAT w/o align), the results of our full model is preferred about two times more than
the one without latent alignment in texture transfer and overall quality. In Fig. 8, compared
to w/o align, the full model achieves lower distances in both single-image FID and self-
similarity distance, which demonstrates that using sparse but confident matches can boost
the structure preservation and stylization at the same time.
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(a) Content (b) Style (c) w/o CCL & align. (d) w/o CCL (e) w/o align. (f) Random neg. (g) COAT

Figure 9: Visual comparison of ablation studies. Given (a) content and (b) style images, the results
are generated from models removing (c) both CCL and latent alignment, (d) only CCL, and (e) only
latent alignment. In (f), negative samples are randomly selected rather than based on correspondence.
(g) is from the full model of the proposed COAT.

The effects of correspondence contrastive loss. We also compare our full model to that
trained with randomly collected negatives or trained without CCL. As shown in Table 1 (the
row of COAT w/o CCL), Fig. 8, and Fig. 9, the negative samples collected with the guidance
of correspondences improves disentanglement of structural and textural components.

The effects of control index n. As reported in Fig. 8, we observe that when the index n
increases the single-image FID becomes larger while the self-similarity distance gets smaller.
For each curve, both distances change gradually in accordance with the variations of index
n. Such gradual visual change can be clearly observed in Fig. 4, and the metrics in Fig. 8
confirm this phenomenon.

5 Conclusion
We proposed the correspondence-driven object appearance transfer GAN (COAT), as well
as the correspondence contrastive loss (CCL), to achieve more accurate, robust, and fine-
grained object appearance transfer, while at the same time preserving the object structure
from the content image. The results of user study and ablation studies demonstrate the
effectiveness of our network design and novel training loss. In addition, visual comparison
to the state-of-the-art methods on four common objects show the superior performance of
COAT in terms of visual quality, texture fidelity, and structure consistency.
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