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— 1. Introduction

Our goal : Re-rendering the structure of the original content image and transfer the
arbitrary appearance of the exemplar style image
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— 2. Previous Approaches
Based on image warping

\IK * First the content and style images are aligned
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Based on latent swapping

Structure e Disentangling the latent code into structure
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\ T \ and texture components through autoencoder
\ D architecture

;2 I \ * However, the high level texture component
\ Ly E—— mostly embeds the global style rather than

capturing rich details from the style image.
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— 4. Network Architecture
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Latent extraction Latent decoding

Latent extraction
e Extracting the latents from the given image pair leveraging the hierarchy of the CNN-

based encoder, obtaining multi-scale feature maps

Latent alighment
e Spatially align the style feature maps to the content feature maps
By measuring consistency of all pair-wise distances, only confident matches are used

Latent decoding

* StyleGAN-based architecture

* To preserve the structure from the content image, the content feature maps are fed to
the first n modulation layers of the decoder

* To transfer high-fidelity textures from the style image, the rest layers are modulated by

3. Proposed Method

Based on multiscale latent alignment
 Multi-scale features from the style image are
aligned to obtain aligned texture features
* Providing more fine-grained textures without
distorting the spatial structure from the

content image
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L the aligned style feature maps.

— 5. Loss Functions

Negatlves n(i, ])

(c) Transfer result 7>!

(a) Content image : (b) Style image [/ 2

Correspondence contrastive loss
* Associates the patches that have a similar structure to each other, while disassociating

them from other patches although with similar textures
* Positive and negative samples for a given query patch are determined based on the
correspondences

Reconstruction loss
* To keep the consistency between the original image and predicted one

Regularization loss
* To keep the extracted latent vectors to be closer to the average latent space
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— 6. EXperiments
Ablation study

Transferred results with different
ee of appearance

Results on human face (CelebA) and animal faceg(AFHQ
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Results on car (Stanford Car) and horse (LSUN- horse)
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