

1. Introduction

Our goal : Re-rendering the structure of the original content image and transfer the arbitrary appearance of the exemplar style image

Transferred image

2. Previous Approaches

Based on *image warping*

- First the content and style images are aligned by dense correspondences before generating the transferred image
- However, Its performance heavily relies on the quality of dense correspondence, often suffering from large appearance geometry variations

Based on *latent swapping*

- Disentangling the latent code into structure and texture components through autoencoder architecture
- However, the high level texture component mostly embeds the global style rather than capturing rich details from the style image.

3. Proposed Method

Based on *multiscale latent alignment*

- Multi-scale features from the style image are aligned to obtain aligned texture features
- Providing more fine-grained textures without distorting the spatial structure from the content image

COAT: Correspondence-driven Appearance Transfer

Sangryul Jeon¹, Zhifei Zhang², Zhe Lin², Scott Cohen², Zhihong Ding², and Kwanghoon Sohn¹ ¹UC Berkeley, ² Adobe Research, ³Yonsei University

4. Network Architecture

Latent extraction

Extracting the latents from the given image pair leveraging the hierarchy of the CNNbased encoder, obtaining multi-scale feature maps

Latent alignment

- Spatially align the style feature maps to the content feature maps
- By measuring consistency of all pair-wise distances, only confident matches are used

Latent decoding

- StyleGAN-based architecture
- To preserve the structure from the content image, the content feature maps are fed to the first n modulation layers of the decoder
- To transfer high-fidelity textures from the style image, the rest layers are modulated by the aligned style feature maps.

5. Loss Functions

(a) Content image I^1

(b) Style image I^2

Correspondence contrastive loss

- Associates the patches that have a similar structure to each other, while disassociating them from other patches although with similar textures
- Positive and negative samples for a given query patch are determined based on the correspondences

Reconstruction loss

To keep the consistency between the original image and predicted one

Regularization loss

To keep the extracted latent vectors to be closer to the average latent space

(c) Transfer result $I^{2 \rightarrow 1}$

6. Experiments

Content

Style

Content

Style

Results on car (Stanford Car) and horse (LSUN-horse)

Content

Style

Correspondence degree of appearance Results on human face (CelebA) and animal face (AFHQ)

STROTSS

DST

StarGAN2

Ours

