1 Implementation Details

FPN [7]-based architecture is employed for the encoder E, and StyleGAN2 [5] is adopted as the decoder D. All the input images are resized to 256×256 before fed into the encoder, and we sample the latent maps to multiple scales, i.e., 64×64, 32×32, and 16×16. For the input indices of the modulation layers in D, 16×16 latent maps are provided to the layers indexing from 1 to 3, 32×32 maps to layers from 4 to 7, and 64×64 maps to layers from 8 to the last (e.g., in our case, the 18th layer is the output layer with the scale of 1024×1024). In the image generation, the original style latent codes are always fed to layers indexing from 10 to the last in D. Therefore, we can set n between 1 and 9 to control texture transfer. In our experiments, $n = 8$ which means that the content latent codes are provided to the modulation layers indexing from 1 to 7, and the aligned style latent codes are fed to layers from 8 to 9. The encoder E_{mod} is constructed by a series of convolutions with the stride of 2 and LeakyReLU activation functions. The temperature $\tau = 0.03$. The threshold $\gamma = 256$.

First, we only learn the parameters of the encoder by freezing the pre-trained StyleGAN2 decoder. In the losses, we set the weights $\alpha = 1$ and $\beta = 0$ for 500k iterations, and then we fine-tune the whole network setting $\beta = 10$ for another 500k iterations.

1.1 Datasets

Here, we provide more details on the employed four datasets.

© 2022. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.
(1) Human Face: For training data, all 70,000 images from the FFHQ [4] dataset were used. For evaluations, we use the official test split of the CelebA-HQ [8] dataset, 2,824 test images. Our decoder outputs 1024 × 1024 resolution image for human face category.

(2) Animal Face: We used the official train-test split of the AFHQ [3] wild dataset consisting of 4,738 and 500 images, respectively. Our decoder outputs 512 × 512 resolution image for animal face category.

(3) Car: 8,144 images from the training split of the Stanford Cars [6] dataset were used to learn our method. For evaluations, we used randomly selected 1,000 images from the test set due to its large test split (8,041 images). Our decoder outputs 512 × 384 resolution image for car category.

(4) Horse: We used the LSUN horse [11] dataset for training and testing images. As the train-test split is not identified, we randomly select 20,000 images to be used for training and 2,000 images for testing. Our decoder outputs 256 × 256 resolution image for horse category.

1.2 Losses

To learn our networks in an unsupervised manner, we utilized the commonly used reconstruction loss L_{rec} that encourages the networks to keep the consistency between the original image and predicted one. Specifically, the reconstruction loss, that consists of Mean Square Error (MSE) for pixel-wise similarity and LPIPS [12] for perceptual similarity, is applied to both content and style images such that

$$L_{\text{rec}} = \lambda_{\text{mse}} L_{\text{mse}} + \lambda_{\text{LPIPS}} L_{\text{LPIPS}},$$

where

$$L_{\text{mse}} = \sum_{k \in \{1, 2\}} \sum_{i} ||I_i - \bar{I}_i||_2,$$

$$L_{\text{LPIPS}} = \sum_{k \in \{1, 2\}} \sum_{i} ||P(I^k)_i - P(\bar{I}^k)_i||_2,$$

$\bar{I} = D(E_{\text{mod}}(E(I)))$, and P is the perceptual feature extractor.

We also employed two regularization losses for our encoder that has been shown effective in recent latent space learning literature [9, 10], such that

$$L_{\text{reg}} = \lambda_{\text{avg}} L_{\text{avg}} + \lambda_{\text{adv}} L_{\text{adv}}.$$

Denoting \bar{F} as the average latent vector of the pretrained StyleGAN2 generator [5], the first loss encourages the extracted latent vectors to be closer to the average one \bar{F}

$$L_{\text{avg}} = \sum_{k \in \{1, 2, 2 \rightarrow 1\}} \sum_{l} ||E_{\text{mod}}(F^{k,l}) - \bar{F}||_2.$$

Another loss further encourages the individual latent vectors $E_{\text{mod}}(F^l)$ to lie within the distribution of the StyleGAN2 latent space based on the adversarial formulation, such that

$$L_{\text{adv}} = \sum_{k \in \{1, 2, 2 \rightarrow 1\}} \sum_{l} \ell_{E}^{k,l} + \ell_{M}^{k,l},$$

where L_E and L_M are the adversarial losses for the encoder E and the discriminator M, respectively as

$$\ell_{E}^{k,l} = -\log M(E_{\text{mod}}(F^{k,l})).$$
\[L_{M}^{k,l} = -\log M(\tilde{F}) - \log(1 - M(E_{mod}(F_{k,l}))). \] (8)

The values of balancing parameters are set to

\[\{\lambda_{mse}, \lambda_{LPIPS}, \lambda_{avg}, \lambda_{adv}\} = \{1, 1, 0.0001, 0.1\} \]

1.3 Network architecture

Our encoder for modulation \(E_{mod} \) consists of a series of 2-strided convolutions with LeakyReLU activations. The discriminator for the adversarial loss in \(L_{adv} \) consists of 4 layer MLP network using LeakyReLU activations.

1.4 User study

As described in Section 4.3 of the main paper, we conducted a user study using Amazon Mechanical Turk. We show the evaluation interfaces in Fig. 1.
Figure 1: Evaluation interface designed with Two-alternative Forced Choice (2AFC) for measuring the preference on style and content preservation. The participants are also asked to choose which they like better overall.
Figure 2: Reconstruction results from the proposed COAT on different datasets. In each example pair, the left is the input image, and the right is reconstructed by COAT, which directly feeds encoded latent to the decoder.

<table>
<thead>
<tr>
<th>Methods</th>
<th>sec ↓ Time</th>
<th>LPIPS ↓</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>StyleGAN2 [5]</td>
<td>79</td>
<td>0.255</td>
<td>0.385</td>
<td>0.305</td>
<td>0.357</td>
</tr>
<tr>
<td>Im2StyleGAN [1]</td>
<td>525</td>
<td>0.161</td>
<td>0.295</td>
<td>0.211</td>
<td>0.178</td>
</tr>
<tr>
<td>pSp [9]</td>
<td>0.065</td>
<td>0.171</td>
<td>0.287</td>
<td>0.350</td>
<td>0.355</td>
</tr>
<tr>
<td>e4e [10]</td>
<td>0.061</td>
<td>0.203</td>
<td>0.315</td>
<td>0.352</td>
<td>0.449</td>
</tr>
<tr>
<td>ReStyle [2]</td>
<td>0.132</td>
<td>0.126</td>
<td>0.250</td>
<td>0.211</td>
<td>0.310</td>
</tr>
<tr>
<td>COAT</td>
<td>0.171</td>
<td>0.081</td>
<td>0.229</td>
<td>0.148</td>
<td>0.202</td>
</tr>
</tbody>
</table>

Table 1: Quantitative comparison of image reconstruction, which is measured by LPIPS [12]. The time indicates average running time per image in second.

2 Additional results

2.1 Image reconstruction

For precise transfer of local textures, it is essential to encode images into the latent space with high fidelity. To this purpose, we validate our method on image reconstruction as compared to the state-of-the-art image generation works, i.e., StyleGAN2 [5] and Im2StyleGAN [1]. Visual examples from our results are shown in Fig. 2, and quantitative comparison measured by LPIPS [12] is reported in Table 1. We compare our approach to the GAN inversion methods based on optimization techniques [1, 5], and the StyleGAN encoders [9, 10].

Our method outperforms the baselines in reconstruction score except for Im2StyleGAN on the Horse dataset. The main reason is the challenging scenarios contained in the LSUN Horse dataset [11], where the objects are mostly unaligned across the instances with non-rigid transformations. Comparing the running time, our COAT runs fast with a single feed-forward pass through the model, while Im2StyleGAN is much more time-consuming since it conducts iterative optimization. Therefore, the better score of Im2StyleGAN is obtained by consuming approximately 2,500 times more computational resources than ours.

2.2 Ablation study on the number of negative samples

We also conduct another ablation study by varying the number of negative samples at level 2. As visualized in Fig. 3, reducing negatives still perform strongly, but utilizing random negatives hurts performance.

2.3 Qualitative results

We uploaded the additional qualitative results on the following link, including the estimated correspondences at each level and the hybrid results in accordance to these correspondences.
Figure 3: Ablation studies for the number of negative correspondences for CCL. Each curve is created by iterating \(n \), a larger \(n \) will result in less texture transfer (large single-image FID) and higher structure fidelity (smaller self-similarity distance). A curve closer to the bottom-left indicate better performance.
References

