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1 Implementation Details
FPN [7]-based architecture is employed for the encoder E, and StyleGAN2 [5] is adopted
as the decoder D. All the input images are resized to 256×256 before fed into the encoder,
and we sample the latent maps to multiple scales, i.e., 64×64, 32×32, and 16×16. For the
input indices of the modulation layers in D, 16× 16 latent maps are provided to the layers
indexing from 1 to 3, 32×32 maps to layers from 4 to 7, and 64×64 maps to layers from 8
to the last (e.g., in our case, the 18th layer is the output layer with the scale of 1024×1024).
In the image generation, the original style latent codes are always fed to layers indexing
from 10 to the last in D. Therefore, we can set n between 1 and 9 to control texture transfer.
In our experiments, n = 8 which means that the content latent codes are provided to the
modulation layers indexing from 1 to 7, and the aligned style latent codes are fed to layers
from 8 to 9. The encoder Emod is constructed by a series of convolutions with the stride of 2
and LeakyReLU activation functions. The temperature τ = 0.03. The threshold γ = 256.

First, we only learn the parameters of the encoder by freezing the pre-trained StyleGAN2
decoder. In the losses, we set the weights α = 1 and β = 0 for 500k iterations, and then we
fine-tune the whole network setting β = 10 for another 500k iterations.

1.1 Datasets
Here, we provide more details on the employed four datasets.
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(1) Human Face: For training data, all 70,000 images from the FFHQ [4] dataset were used.
For evalutions, we use the official test split of the CelebA-HQ [8] dataset, 2,824 test images.
Our decoder outputs 1024×1024 resolution image for human face category.
(2) Animal Face: We used the offical train-test split of the AFHQ [3] wild dataset consisting
of 4,738 and 500 images, respectively. Our decoder outputs 512×512 resolution image for
animal face category.
(3) Car: 8,144 images from the training split of the Stanford Cars [6] dataset were used to
learn our method. For evaluations, we used randomly selected 1,000 images from the test set
due to its large test split (8,041 images). Our decoder outputs 512× 384 resolution image
for car category.
(4) Horse: We used the LSUN horse [11] dataset for training and testing images. As the
train-test split is not identified, we randomly select 20,000 images to be used for training
and 2,000 images for testing. Our decoder outputs 256× 256 resolution image for horse
category.

1.2 Losses
To learn our networks in an unsupervised manner, we utilized the commonly used recon-
struction loss Lrec that encourages the networks to keep the consistency between the original
image and predicted one. Specifically, the reconstruction loss, that consists of Mean Square
Error (MSE) for pixel-wise similarity and LPIPS [12] for perceptual similarity, is applied to
both content and style images such that

Lrec = λmseLmse +λLPIPSLLPIPS, (1)

where
Lmse = ∑k∈{1,2}∑i ||I

k
i − Īk

i ||2, (2)

LLPIPS = ∑k∈{1,2}∑i ||P(I
k)i −P(Īk)i||2, (3)

Ī = D(Emod(E(I))), and P is the perceptual feature extractor.
We also employed two regularization losses for our encoder that has been shown effective

in recent latent space learning literature [9, 10], such that

Lreg = λavgLavg +λadvLadv. (4)

Denoting F̄ as the average latent vector of the pretrained StyleGAN2 generator [5], the first
loss encourages the extracted latent vectors to be closer to the average one F̄

Lavg = ∑k∈{1,2,2→1}∑l ||Emod(Fk,l)− F̄ ||2. (5)

Another loss further encourages the individual latent vectors Emod(F l) to lie within the dis-
tribution of the StyleGAN2 latent space based on the adversarial formulation, such that

Ladv = ∑k∈{1,2,2→1}∑l L
k,l
E +Lk,l

M , (6)

where LE and LM are the adversarial losses for the encoder E and the discriminator M,
respectively as

Lk,l
E =− logM(Emod(Fk,l)), (7)
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Lk,l
M =− logM(F̄)− log(1−M(Emod(Fk,l))). (8)

The values of balancing parameters are set to

{λmse,λLPIPS,λavg,λadv}= {1,1,0.0001,0.1}

.

1.3 Network architecture
Our encoder for modulation Emod consists of a series of 2-strided convolutions with LeakyReLU
activations. The discriminator for the adversarial loss in Ladv consists of 4 layer MLP net-
work using LeakyReLU activations.

1.4 User study
As described in Section 4.3 of the main paper, we conducted a user study using Amazon
Mechanical Turk. We show the evaluation interfaces in Fig. 1.
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Figure 1: Evaluation interface designed with Two-alternative Forced Choice (2AFC) for
measuring the preference on style and content preservation. The participants are also asked
to choose which they like better overall.
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(a) CelebA-HQ [8] (b) AFHQ [3] (c) Stanford Cars [6] (d) LSUN Horse [11]
Figure 2: Reconstruction results from the proposed COAT on different datasets. In each example pair,
the left is the input image, and the right is reconstructed by COAT, which directly feeds encoded latent
to the decoder.

Methods sec ↓ LPIPS ↓
Time CelebA Car AFHQ LSUN

StyleGAN2 [5] 79 0.255 0.385 0.305 0.357
Im2StyleGAN [1] 525 0.161 0.295 0.211 0.178
pSp [9] 0.065 0.171 0.287 0.350 0.355
e4e [10] 0.061 0.203 0.315 0.352 0.449
ReStyle [2] 0.132 0.126 0.250 0.211 0.310
COAT 0.171 0.081 0.229 0.148 0.202

Table 1: Quantitative comparison of image reconstruction, which is measured by LPIPS [12]. The
time indicates average running time per image in second.

2 Additional results

2.1 Image reconstruction
For precise transfer of local textures, it is essential to encode images into the latent space with
high fidelity. To this purpose, we validate our method on image reconstruction as compared
to the state-of-the-art image generation works, i.e., StyleGAN2 [5] and Im2StyleGAN [1].
Visual examples from our results are shown in Fig. 2, and quantitative comparison measured
by LPIPS [12] is reported in Table 1. We compare our approach to the GAN inversion
methods based on optimization techniques [1, 5], and the StyleGAN encoders [2, 9, 10].

Our method outperforms the baselines in reconstruction score except for Im2StyleGAN
on the Horse dataset. The main reason is the challenging scenarios contained in the LSUN
Horse dataset [11], where the objects are mostly unaligned across the instances with non-
rigid transformations. Comparing the running time, our COAT runs fast with a single feed-
forward pass through the model, while Im2StyleGAN is much more time-consuming since
it conducts iterative optimization. Therefore, the better score of Im2StyleGAN is obtained
by consuming approximately 2,500 times more computational resources than ours.

2.2 Ablation study on the number of negative samples
We also conduct another ablation study by varying the number of negative samples at level
2. As visualized in Fig. 3, reducing negatives still perform strongly, but utilizing random
negatives hurts performance.

2.3 Qualitative results
We uploaded the additional qualitative results on the following link, including the estimated
correspondences at each level and the hybrid results in accordance to these correspondences.

Citation
Citation
{Liu, Luo, Wang, and Tang} 2015

Citation
Citation
{Choi, Uh, Yoo, and Ha} 2020

Citation
Citation
{Krause, Stark, Deng, and Fei-Fei} 2013

Citation
Citation
{Yu, Seff, Zhang, Song, Funkhouser, and Xiao} 2015

Citation
Citation
{Karras, Laine, Aittala, Hellsten, Lehtinen, and Aila} 2020

Citation
Citation
{Abdal, Qin, and Wonka} 2019

Citation
Citation
{Richardson, Alaluf, Patashnik, Nitzan, Azar, Shapiro, and Cohen-Or} 2021

Citation
Citation
{Tov, Alaluf, Nitzan, Patashnik, and Cohen-Or} 2021

Citation
Citation
{Alaluf, Patashnik, and Cohen-Or} 2021

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018

Citation
Citation
{Karras, Laine, Aittala, Hellsten, Lehtinen, and Aila} 2020

Citation
Citation
{Abdal, Qin, and Wonka} 2019

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018

Citation
Citation
{Abdal, Qin, and Wonka} 2019

Citation
Citation
{Karras, Laine, Aittala, Hellsten, Lehtinen, and Aila} 2020

Citation
Citation
{Alaluf, Patashnik, and Cohen-Or} 2021

Citation
Citation
{Richardson, Alaluf, Patashnik, Nitzan, Azar, Shapiro, and Cohen-Or} 2021

Citation
Citation
{Tov, Alaluf, Nitzan, Patashnik, and Cohen-Or} 2021

Citation
Citation
{Yu, Seff, Zhang, Song, Funkhouser, and Xiao} 2015

https://drive.google.com/drive/folders/1Erxj-EDcoTeWY_LkaFRxCASnKYy0JmIb?usp=sharing


6 S.JEON ET AL.: CORRESPONDENCE-DRIVEN OBJECT APPEARANCE TRANSFER

0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145

40

45

50

55

60

65

70

Figure 3: Ablation studies for the number of negative correspondences for CCL. Each curve
is created by iterating n, a larger n will result in less texture transfer (large single-image FID)
and higher structure fidelity (smaller self-similarity distance). A curve closer to the bottom-
left indicate better performance.
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