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Abstract

Automatic liver tumor segmentation is important for assisting doctors in accurate di-
agnosis of liver cancer. Existing models for liver tumor segmentation usually require
accurate pixel-level labels. However, acquiring such dense labels is laborious and costly.
In this paper, we propose a weakly supervised method for liver tumor segmentation us-
ing volume-level labels, which can significantly reduce the manual annotation effort.
Volume-level labels are propagated to image-level labels where all the slices in one CT
volume share the same label, and pixel-level pseudo labels can be estimated from image-
level labels. However, it will cause the label noise problem because not all slices con-
tain tumors. To address this issue, we propose two label refinement strategies based on
anatomical priors to reduce the training noise and improve the model performance. Eval-
uation experiments on two public datasets demonstrate that our proposed method can
achieve competitive results compared to other methods with stronger supervision.

1 Introduction

Liver cancer is one of the leading cause of death globally, while early diagnosis can facilitate
appropriate surveillance strategy and reduce cancer mortality [9, 13, 14, 20]. Automatic liver
tumor segmentation is of great importance for assisting doctors in liver cancer diagnosis
[7, 15, 17, 18, 26]. Deep learning based methods have been proposed for automatic liver
tumor segmentation, which typically require pixel-level labels. However, obtaining such
high-quality labels is extremely laborious and costly, which makes many successful deep
learning techniques inapplicable.

Weak labels have been widely explored for medical image segmentation [1, 4, 6, 8, 12,
21, 22, 27]. As for liver tumor segmentation, using image-level labels based on Couin-
aud segment is proposed in [10], where Couinaud scheme is the widely used system in
clinical practice which divides the liver into eight segments based on vascular structure
[5, 11, 19, 25]. Couinaud segment is often used by radiologists to describe the localization
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(i) Liver Anatomy (ii) Couinaud Segment Label

(b) Comparing strong and weak labels for liver tumor segmentation

Figure 1: (a) Couinaud segment: i) The Couinaud classification of liver anatomy divides the
liver into eight functionally independent segments based on its vascular structure. Automatic
methods have been successfully applied to construct the Couinaud scheme from CT volumes
without manual efforts. ii) The Couinaud segment label indicates a specific region of the
liver, and can generate the Couinaud segment mask using existing automatic methods [10].
(b) Comparing strong and weak labels for liver tumor segmentation: i) Fully supervised
pixel-level labels. ii) Weakly supervised image-level labels based on Couinaud segment. iii)
Weakly supervised volume-level labels studied in our method, which can be treated as noisy
image-level labels. Green: Correct labels. Red: Incorrect labels. Best viewed in color.

of liver tumors when they record their findings in radiology reports. For example, ‘There
is a new 13mm tumor with arterial enhancement in segment VI suspicious of recurrence’.
Automatic methods have been successfully applied to construct the Couinaud scheme from
CT volumes without manual efforts, as shown in Figure 1 (a)(i). Even Couinaud segment
label is an image-level label, it indicates a specific region of the liver, and the Couinaud seg-
ment mask can be derived accordingly, as shown in Figure 1 (a)(ii). Inspired by [10], we are
concerned with a more challenging weakly supervised segmentation setting, in which only
volume-level labels are provided. Such a setting has great potential for practical applications
since it requires significantly less annotation effort. Some pioneer works have investigated
weakly supervised learning with volume-level labels. Most of these methods are designed
for classification tasks [2, 23]. As for the segmentation task, a small amount of pixel-level
labels is still required [24].

In this paper, we start the first attempt to utilize volume-level labels to train deep mod-
els for liver tumor segmentation. Comparison of different labels is shown in Figure 1 (b).
Volume-level labels can be propagated to image-level labels and all the slices in one CT
volume share the same label, but it will cause the label noise problem since not all slices
contain tumors. To address this issue, we propose two label refinement strategies based on
anatomical priors. We notice several distinct anatomical priors, i.e., 1) All eight Couinaud
segments of the liver can not exist on the same CT slice simultaneously; 2) Tumors should be
continuous across adjacent slices. To incorporate these anatomical priors into our method,
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Figure 2: Overview of our proposed method for liver tumor segmentation with volume-level
labels. Volume-level labels are treated as noisy image-level labels, and two label refinement
strategies based on anatomical priors are proposed to reduce the label noise.

we introduce image-level label refinement (ILR) and pixel-level label refinement (PLR) to
reduce the training noise. First, we identify CT slices with incorrect image-level labels and
rectify their pathological labels (1~8) to healthy labels (0). Second, we propose a conti-
nuity index to re-weight the pixel-level prediction probability, aiming to reduce the false
positives in the pixel-level pseudo labels. We evaluate our method on two public datasets
for liver tumor segmentation, which only provide the volume-level labels for training. The
experiment results demonstrate that our method achieves competitive results while requiring
significantly less annotation effort.

Our main contributions are summarized as follows: (1) We propose to train deep neural
networks for liver tumor segmentation using volume-level labels, which significantly reduces
human annotation effort. (2) We treat the volume-level labels as noisy image-level labels,
and propose two label refinement strategies based on anatomical priors to reduce the training
noise and improve the performance. (3) The experiment results quantitatively demonstrate
the effectiveness of our proposed method.

2 Method

Figure 2 illustrates the proposed method for liver tumor segmentation with volume-level la-
bels. Our method roots in CouinaudNet which can estimate pixel-level pseudo labels from
image-level Couinaud segment labels [10], and proposes two label refinement strategies
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(a) Training CouinaudNet

Random
Selection

(b) Generating Pixel-Level Pseudo Labels

i

Label| 7,8
abe 2 Couinaud Segment Mask Generation

a CouinaudNet . ;

& Fixed {Label| 0

Figure 3: Illustration of CouinaudNet. (a) Training CouinaudNet. CouinaudNet is first
trained only with healthy training images. A Couinaud segment is randomly selected to gen-
erate the Couinaud segment mask, and a synthesized tumor is injected to the healthy image
in the selected Couinaud segment region. The synthetic image and the derived Couinaud
segment mask are used as inputs to CouinaudNet. (b) Generating Pixel-Level Pseudo La-
bels. The trained CouinaudNet is used to generate pseudo tumor masks for the pathological
training image (label: 1~8). A healthy training image (label: 0) has no tumors, and its tumor
mask is denoted as a black mask. In this way, pixel-level pseudo labels are available for all
training images.

based on anatomical priors to reduce label noise.

We first briefly illustrate CouinaudNet in Figure 3. Image-level labels are required for
CouinaudNet, which can be divided into two parts: healthy training images (label: 0) and
pathological training image (label: 1~8). During training, only healthy training images are
used and synthetic tumors are injected to a random Couinaud segment. The synthetic image
and the derived Couinaud segment mask are used as inputs to CouinaudNet, and the output
is the liver tumor mask. With the trained CouinaudNet, pseudo tumor masks are estimated
for those pathological training images. Healthy training images have no tumors, and their
tumor masks are denoted as black masks.

2.1 Liver Tumor Segmentation with Volume-level Labels

All the slices in one CT volume share the same image-level labels based on the provided
volume-level labels, such that volume-level labels can be treated as noisy image-level labels.
CouinaudNet is proposed to train deep neural networks with image-level labels based on
Couinaud scheme in [10], and we adopt it as the baseline model.

Training CouinaudNet. Only healthy training images are used for training Couinaud-
Net, which aims at learning a deep model for estimating pixel-level pseudo labels from
image-level labels. Pathological training images are not used for training CouinaudNet, but
part of them with incorrect labels can be added to original healthy training images for train-
ing CouinaudNet after image-level label refinement .

Generating Pixel-level Pseudo Labels. D, = {xhi,mhi}f-‘il denotes the set of healthy
training images and their pseudo labels, and the value of their pseudo labels is always zero
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since no tumors exist. CouinaudNet has been well trained with healthy training images, and
it can be used to estimate pixel-level pseudo labels for pathological training images. The
set of pathological training images and their pixel-level pseudo labels is described as D; =
{x, m,i}f/: |- These pseudo labels can be further improved after pixel-level label refinement.

Training Segmentation Model. Provided all the training images and their correspond-
ing pixel-level pseudo labels D = {D,,D;}, we can train a fully supervised liver tumor
segmentation model f°. f* predicts a tumor segmentation map p; for training image x;, and
we employ cross entropy loss to train the model, which is defined as follows:

Eseg:_zmi'log(fs(xi))a (D

where m; is pixel-level pseudo label for x;. Various deep models have been proposed for
liver tumor segmentation with pixel-level supervision, and we adopt nnU-Net [3] which has
achieved impressive performance in various biomedical image segmentation challenges.

2.2 Image-level Label Refinement

Volume-level labels are propagated to image-level labels, and training images are labeled as
healthy only when no tumors exist in the whole CT volume. In this way, only a small amount
of training images are healthy, while a large amount of training images are falsely labeled as
pathological. To this end, we aim to filter out these training images with incorrect labels and
rectify their pathological labels to healthy labels. Motivated by the observation that all eight
Couinaud segments of the liver can not exist on the same CT slice simultaneously, we can
identify CT slices that do not contain the Couinaud segments indicated in the pathological
labels, and rectify their labels.

Given an input image x;, its Couinaud scheme can be obtained automatically from the
Couinaud constructor in [10], where each pixel has value pv € S,5 C {1,2...,8}. y; is the
image-level label derived from the volume-level label for input image x;, and the refined
label §; is defined as follows:

0, ify; ¢S
9j={’ s @

yj, otherwise

4 Image-level Image-level Image-level

o el ' B 0|
: v x v

Figure 4: Illustration of the proposed image-level label refinement strategy. S,, S, and S,

share the same label, but S, and S, are falsely labeled as pathological because they do not

have tumors. After image-level label refinement, the image-level label of S, is rectified to
the correct label. Best viewed in color.
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Figure 3 illustrates the proposed image-level label refinement strategy. Three slices from
the CT volume are shown in the figure, and they share the same image-level label as the
volume-level label. However, S, and S, are falsely labeled as pathological since they do not
have tumors. S, contains Couinaud segment S = {4, 5,6}, and its label is y. = 7. Considering
Ye ¢ S, its label can be adjusted to §. = 0. In this way, some CT slices with incorrect labels
can be rectified.

2.3 Pixel-level Label Refinement

After image-level label refinement, labels of some training images can be corrected. How-
ever, a significant number of images still suffer from incorrect labels. In this regard, we pro-
pose a continuity index to re-weight the pixel-level prediction probability, aiming to reduce
the false positives in the pseudo labels generated from the trained CouinaudNet. Considering
that tumors should be continuous across adjacent slices, our idea is to reduce the prediction
probability of those isolated tumors.

Given the CouinaudNet f* trained using healthy training images, each pathological train-
ing image x; can obtain the predictive output oy, i.e., oy = f¢(x;). The pseudo tumor mask
my, can be generated from oy after binarization, which is denoted as:

mp=1(ox > 1), T€(0,1) A3)

where 1(.) is the indicator function, and 7 is the threshold for binarization.
Given binary tumor masks A and B, the Dice score can be calculated as:
2|ANB|

DICE(A,B) = VIFE 4)

We define the continuity index CI;, of x; as follows:
CI, = ¢ - max{DICE (my,my_1), DICE (my,my1) } 5)

where my_| and my. | are the pseudo tumor masks of neighbouring slices, and c is the scaling
coefficient for calculating the continuity index.
After CI is obtained for xg, its refined pixel-level pseudo label 77, can be generated as
follows:
Ay =1((ox-Cl) 2 1), 7T€(0,1) (©6)

where CI;, is used to re-weight the pixel-level prediction probability. Isolated prediction
results are unlikely to be true tumors, and their probability is reduced after re-weighting.

3 Experiments

3.1 Experiment Setup
3.1.1 Dataset and Evaluation Metrics.

We evaluate our method on two public datasets for liver tumor segmentation. The 3DIRCADb
dataset [16], which contains 15 CT volumes with liver tumors and 5 CT volumes without
tumors. Among 15 CT volumes with tumors, 10 of them provide the location of tumors
based on Couinaud scheme. 10 CT volumes with location labels and 5 CT volumes without
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ILR PLR Dice per case(%) Dice global(%)
5.9 8.1
v 21.9 17.9
v 12.7 17.2
v N 35.6 32.2

Table 1: Evaluation of each component on 3DIRCADD test set. (ILR: image-level label
refinement; PLR: pixel-level label refinement.)

tumors are used as training datasets in our experiment, while the left 5 CT volumes with
tumors are used as test datasets. Details of the dataset are provided in the Supplementary
Materials. Another dataset is Medical Segmentation Decathlon Task08 (MSDOS), where the
volume-level labels are automatically generated based on the overlap between tumor masks
and groundtruth Couinaud scheme. Following [10], we use 161 volumes for training, and
142 volumes for testing. For evaluation, we employ two commonly used metrics for liver
tumor segmentation, including Dice per case score and Dice global score. The Dice per case
score is the average score across all cases, while the Dice global score combines all cases
into one case to obtain the global dice score.

3.1.2 Implementation Details

In the pre-processing step, we rescale the CT intensity range to [0,255] using the CT window
[-200, 250]. Similar to [10], we only keep the liver region and remove irrelevant information
to reduce computation cost. Unless otherwise notes, all hyperparameters are as in [10] for
CouinaudNet. Provided all training images and their tumor masks, i.e., healthy training
images with healthy masks (black masks with no tumors) and pathological training images
with estimated pseudo tumor masks using the trained CouinaudNet, we can train a fully
supervised tumor segmentation model implemented by nnU-net [3]. The threshold t for
binarization is set to 0.5, and the scaling coefficient ¢ for calculating the continuity index is
set to 5 in our method.

3.2 Analysis of Our Method
3.2.1 Image-level Label Refinement.

To validate the effectiveness of image-level label refinement (ILR), we analyze the per-
formance of the image-level labels derived from volume-level labels on 3DIRCADb. As
shown in Figure 5(a), a large amount of training images without tumors are falsely labeled
as pathological before ILR. After ILR, the number of training images with incorrect labels is
reduced from 854 to 465, which demonstrates that ILR can effectively improve the quality
of the propagated image-level labels. In this way, more healthy images can be used to train
CouinaudNet, and a better trained CouinaudNet can estimate pixel-level pseudo labels for
pathological training images with higher quality.

3.2.2 Pixel-level Label Refinement.

To analyze the contribution of pixel-level label refinement (PLR), we calculate the Dice
scores between the generated pseudo labels and manually annotated labels before and after
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Figure 5: (a) Confusion matrix of the image-level labels derived from volume-level labels
before and after image-level label refinement (ILR) on 3DIRCADb. (b) The Dice scores
between the generated pixel-level pseudo labels and manually annotated labels before and
after pixel-level label refinement (PLR) on 3DIRCADD.

Supervision Methods Dice per case(%) Dice global(%)
Pixel-level nnU-Net [3] 49.8 48.9
Image-level CouinaudNet [10] 34.3 333
CouinaudNet [10] 59 8.1
Volume-level Ours 35.6 322

Table 2: Comparison of liver tumor segmentation results on 3DIRCADD test set.

PLR on 3DIRCAD®D. Figure 5(b) shows that the quality of pseudo labels shows an obvious
improvement after PLR. We also try to apply PLR as a post-processing step, but we find the
performance is not ideal. The possible reason is that errors caused by PLR would directly
impact the performance in post-processing, while pseudo labels have a certain tolerance of
such errors during model training.

3.2.3 Ablation Study.

We conduct ablation study to evaluate the two label refinement strategies. As shown in
Table 1, it shows poor performance of liver tumor segmentation without any label refinement.
After adding ILR, the dice per case score is increased by 16.0% and the dice global score is
increased by 9.8%. When further combined with PLR, the dice per case score is increased
to 35.6% and the dice global score is increased to 32.2%. Therefore, we can conclude that
both label refinement strategies cam improve the tumor segmentation performance over the
vanilla CouinaudNet with volume-level labels.

3.3 Comparison with State-of-the-Arts

Table 2 displays the liver tumor segmentation results with different levels of supervision on
3DIRCADD test set. nnU-Net [3] trained with pixel-level labels can be regarded as the upper
bound, but both the dice per case score and the dice global score are lower than 50%. The
average number of tumors in the training dataset is 2, but the numbers of tumors in the test
dataset are 7, 20, 8, 20 and 46 respectively, which makes it a challenging task essentially.
Using image-level labels shows degraded performance since its supervision is weakened.
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Supervision Methods Dice per case(%) Dice global(%)
Pixel-level nnU-Net [3] 70.5 86.7
Image-level CouinaudNet [10] 62.2 74.0
CouinaudNet [10] 23.1 28.5
Volume-level Ours 58.9 723

Table 3: Comparison of liver tumor segmentation results on MSDOS test set.

Figure 6: Examples of liver tumor segmentation results by models trained with volume-level
labels using our proposed method on the 3DIRCADD test dataset. The green ones denote the
ground truths, while the red ones denote the segmentation results using our method. Best
viewed in color.

Directly applying CouinaudNet for training deep neural networks with volume-level im-
ages performs poorly, while our method with two label refinement strategies shows obvious
improvement over the vanilla CouinaudNet and can achieve comparable or even better per-
formance than the method using image-level labels, which demonstrates the effectiveness of
our proposed method.

3DIRCADD faces a great challenge due to its small dataset size, and the task difficulty is
also an important factor for affecting the results. To further validate the effectiveness of our
method, we also conduct experiments on the MSDOS dataset, as shown in Table 3. MSD08
has a larger number of test samples than 3DIRCADb. Based on the experiment results, we
can get the same conclusion that our method can achieve competitive results compared to
other methods with stronger supervision.

Figure 6 shows some examples of liver tumor segmentation results by models trained
with volume-level labels using our proposed method on the 3DIRCADD test dataset. We can
observe that tumors can be well segmented in Figure 5 (a-c). Our method also has some
limitations, and we show some failure cases in Figure 5 (d-e). We can observe that the
segmentation performance is not good when segmenting tumors with complicated textures.
This is a common problem in medical image segmentation, especially when the supervision
information of volume-level labels is substantially weakened. We would like to explore
solutions to improve the performance for these hard cases in the future work.


Citation
Citation
{Isensee, Jaeger, Kohl, Petersen, and Maier-Hein} 2021

Citation
Citation
{Lyu, Ma, Yip, Wong, and Yuen} 2022

Citation
Citation
{Lyu, Ma, Yip, Wong, and Yuen} 2022


10 FEI, ANDY, PC: ANATOMICAL PRIOR-INSPIRED LABEL REFINEMENT

4 Conclusion

In this paper, we present a weakly supervised method to train deep neural networks for liver
tumor segmentation with volume-level labels. We treat volume-level labels as noisy image-
level labels, and propose two label refinement strategies based on anatomical priors to reduce
the label noise. Our method achieves impressive results compared to competing methods but
requires less annotation effort. The volume-level label studied in our method is often used
by radiologists for recording liver pathologies in radiology reports, and our method provides
a promising solution for fully leveraging the wealth of plenty radiology reports which are
stored in hospital archiving and communication systems.
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