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Comparison of liver tumor segmentation results on MSDOS8 test set.
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** Self evaluation
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Ablation study

(b) Comparing strong and weak labels for liver tumor segmentation

All eight Couinaud segments of the liver can not exist on the same CT
 Couinaud segment is often used by radiologists to slice simultaneously.

describe the localization of liver tumors and can be
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* Contribution
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* We propose to train deep neural networks for liver | | < Pixel-level label refinement »* Visualization results
tumor segmentation using volume-level labels,
which greatly reduces human annotation effort.

* We treat the volume-level labels as noisy image-
level labels and propose two label refinement
strategies based on anatomical priors to reduce the my=1T(f"(xx) = 7)
training noise and improve the performance.

* The experimental results quantitatively demonstrate
the effectiveness of our proposed method. m=1(f(xy) * CI;, = 1)

Tumors should be continuous across adjacent slices.
Continuity index is proposed to re-weight the pixel-level prediction
probability:

C1k= C: maX{D|CE(mk , My _1 ), DlCE(mk , mk+1)}




