

## Introduction

- important for assisting doctors in clinical practice.
- acquiring such dense labels is laborious and costly.



- We propose to train deep neural networks for liver tumor segmentation using volume-level labels, which greatly reduces human annotation effort.
- We treat the volume-level labels as noisy imagelevel labels and propose two label refinement strategies based on anatomical priors to reduce the training noise and improve the performance.
- The experimental results quantitatively demonstrate the effectiveness of our proposed method.

# **Anatomical Prior-Inspired Label Refinement for Weakly Supervised Liver Tumor Segmentation with Volume-Level Labels**

Fei Lyu<sup>1</sup>, Andy J. Ma<sup>2</sup>, and Pong C. Yuen<sup>1</sup> <sup>1</sup> Hong Kong Baptist University <sup>2</sup> Sun Yat-Sen University

Method



### Pixel-level label refinement

Tumors should be continuous across adjacent slices. Continuity index is proposed to re-weight the pixel-level prediction probability:

> $m_k = \mathbb{I}\left(f^c(x_k) \geq \tau\right)$  $CI_k = c \cdot \max\{\text{DICE}(m_k, m_{k-1}), \text{DICE}\}$  $\widehat{m_k} = \mathbb{I}(f^c(x_k) * CI_k \geq$

$$\Xi(m_k, m_{k+1})\}$$

# Experiments

## **Comparison with State-of-the-Arts**

| Supervision  | Methods          | Dice per case(%) | Dice global(%) |
|--------------|------------------|------------------|----------------|
| Pixel-level  | nnU-Net [3]      | 49.8             | 48.9           |
| Image-level  | CouinaudNet [10] | 34.3             | 33.3           |
| Volume-level | CouinaudNet [10] | 5.9              | 8.1            |
|              | Ours             | 35.6             | 32.2           |

| Supervision  | Methods          | Dice per case(%) | Dice global(%) |
|--------------|------------------|------------------|----------------|
| Pixel-level  | nnU-Net [3]      | 70.5             | 86.7           |
| Image-level  | CouinaudNet [10] | 62.2             | 74.0           |
| Volume-level | CouinaudNet [10] | 23.1             | 28.5           |
|              | Ours             | 58.9             | 72.3           |

# Self evaluation





Evaluation of image-level labels

## **Visualization results**



#### Comparison of liver tumor segmentation results on 3DIRCADb test set.

#### Comparison of liver tumor segmentation results on MSD08 test set.

| Dice per case(%) | Dice global(%) |
|------------------|----------------|
| 5.9              | 8.1            |
| 21.9             | 17.9           |
| 12.7             | 17.2           |
| 35.6             | 32.2           |
|                  |                |

#### Ablation study



pseudo labels