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Abstract

Instance segmentation, which requires instance-level mask prediction, is a funda-
mental task in computer vision. Many methods have been proposed in this field. How-
ever, the existing methods still do not perform well in complex scenarios such as oc-
clusion. In this work, we analyzed the segmentation errors of some typical instance
segmentation models. We found that false negatives (i.e. misclassification of foreground
pixels as background) accounted for the majority of errors. It can be attributed to the
inconsistent features of the same instance under complex scenarios. To address this
problem, we proposed a dense contrastive loss to encourage the segmentation network
to learn more consistent feature representations. Specifically, features on the same in-
stance are pulled closer, while features on different instances and features between in-
stances and the background are pushed farther apart. Without introducing any extra infer-
ence cost, the proposed method mitigated false-negative errors and achieved significant
improvements on the Cityscapes and MS-COCO datasets. Code will be available at
https://github.com/tinyalpha/DCL.

1 Introduction
Instance segmentation, a fundamental task in computer vision, has received extensive atten-
tion from the community [5, 8, 11, 12, 14, 20, 28, 32]. The purpose of instance segmenta-
tion is to predict an instance-level mask for each object in the image, separately. To achieve
this, multi-stage methods (such as Mask R-CNN and its variants [5, 8, 14, 20]) follow a
detect-then-segment manner. These algorithms first use a detector to localize the object,
crop its corresponding features and apply a segmentation head to obtain the final mask. Re-
cently, one-stage methods, which directly segment the objects, have gradually become a new
trend [28, 32, 33, 35].

Despite some improvements in these methods, their performance (especially in complex
scenarios) is still unsatisfactory. Instance segmentation is a complex task and a method can
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make different types of errors. It is unclear which type of error is the dominant one. A
systematic analysis is desired before proposing better methods. In this work, we classify the
instance segmentation errors into detection and segmentation errors, providing a fine-grained
analysis of the segmentation errors. As shown in Figure 1, segmentation errors are decoupled
into three types and are analyzed separately.

Through error analysis of existing instance segmentation models, we found that false-
negative error (i.e. misclassification of foreground as background) accounted for the major-
ity of the errors. As shown in Figure 2, the amount of false-negative (FN) errors are much
more than the foreground false-positive (fFP) and background false-positive (bFP) errors
(corresponding to over-segmented pixels belonging to the foreground and background, re-
spectively; see Section 3 for details). For example, on the Cityscapes dataset [13], FN errors
caused a severe performance drop (18.8% AP) for Mask R-CNN [14], while fFP and bFP
errors caused small drops (about 5% AP). This can be attributed to the fact that in complex
scenes (occlusion, bad illumination, etc.), segmentation networks cannot predict consistent
feature representations for different pixels on the same instance, which causes that some
foreground pixels are mis-classified as background.

To alleviate this problem, we propose a dense contrastive loss to encourage the model
to learn compact instance feature representations. Specifically, we apply the proposed loss
function to guide the feature learning of the segmentation head. Features on the same in-
stance are pulled closer, while features on different instances and features between instances
and the background are pushed farther apart. As a result, the model is guided to learn a
consistent feature representation for different pixels on the same instance. Without intro-
ducing any inference overhead, the proposed method mitigated false-negative errors and
significantly improved the performance of various baselines.

Our contributions are summarized as follows: (1) We for the first time provide a detailed
analysis of the segmentation errors for the task of instance segmentation and reveal that
false negatives accounted for the majority of the errors. (2) To mitigate the false-negative
errors, we proposed a dense contrastive loss function. (3) Without any inference overhead,
our method effectively mitigated the false-negative errors and significantly improved the
segmentation results. Extensive experiments on the Cityscapes [13] and MS-COCO [24]
datasets validated the effectiveness of our approach.

2 Related Work

Instance Segmentation. Existing instance segmentation algorithms can be divided into
multi-stage and one-stage ones. The multi-stage methods follow a detect-then-segment
manner. Mask R-CNN [14] utilizes RoIAlign to extract the features corresponding to the
detection box and apply a mask head for instance-level segmentation. Cascade R-CNN [5],
HTC [8], and RefineMask [38] further improve the performance by cascading and refin-
ing. Instead, one-stage methods directly predict instance-level masks. CondInst [28] and
SOLOv2 [33] directly predict a set of instance-level convolutional kernels for segmentation.
PolarMask [35] predicts the polar coordinate representation of the instance mask. Recently,
transformer-based models [6, 10, 19] have also achieved competitive results. Our method
applies to arbitrary frameworks. We mainly demonstrate the effect with multi-stage models
as an example.

Contrastive Learning. Contrastive learning is a flexible technique in that different objec-
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Figure 1: Illustration of the three types of errors defined (red shaded areas). Di denotes a
predicted mask, G∗

i is its matched ground-truth mask, and G j is another adjacent instance
of the same class. (a) Foreground false positive: over-segmented pixels which belong to
the foreground. (b) Background false positive: over-segmented pixels which belong to the
background. (c) False negative: under-segmented pixels. Best viewed in digit with color.

tives can be realized by different positive and negative sample definitions and loss function
designs. Several works [7, 9, 15, 27, 29] applied contrastive learning to self-supervised pre-
training and succeeded greatly. Recently, some work has attempted to apply this technique to
dense prediction tasks. Some [18, 31, 37] improve semantic segmentation by mining seman-
tic relations between pixels across different images via contrastive learning. Another line of
work [2, 34, 39, 40] explores the use of contrastive learning to improve the performance of
semi-supervised segmentation networks. In contrast, we focus on fully supervised instance
segmentation and utilize contrastive learning to fix the false-negative errors.

Error Analysis Tools. Several works [1, 3, 4, 16, 17] have been proposed for the error
analysis of object detection. COCO analysis toolkit [1] evaluates the impact of different error
types on the precision-recall curve on the COCO dataset. UpperBound [4] analyzes the upper
bound of the object detection. TIDE [3] isolates and compares different error types for object
detection and instance segmentation. These tools are mainly designed for object detection.
Although one can apply these tools on instance segmentation by replacing box IoU with
mask IoU, they cannot analyze segmentation errors separately. As a complement, we propose
an analysis tool for segmentation errors that can lead to more fine-grained conclusions. The
Supplementary Material provides a detailed comparison.

3 Error Analysis
We decouple detection and segmentation errors in two steps: (1) for each predicted mask, we
first try to match it with a ground-truth mask by IoU. If the predicted mask does not match
any ground-truth mask, then we name it an unmatched prediction. The unmatched predic-
tions and the missed ground-truth masks (not matched by any prediction) lead to detection
errors, which have been analyzed in the previous error analysis tools. (2) For the matched
masks pair, we compare their difference (defined as segmentation errors). Instead of analyz-
ing detection errors, we focused on segmentation errors, which were not covered in previous
works.

We classify the segmentation errors into the three types as shown in Figure 1. For a
given image, we denote the M ground-truth masks and the N predicted masks as {Gi}M

i=1
and {Di}N

i=1, respectively. Each element in the sets (i.e. Gi or Di) is a set of pixels. For each
prediction Di, we first try to assign it with a ground-truth mask G∗

i with the largest mask
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Figure 2: Segmentation error analysis of various models and datasets. The values indicate
the expected improvements if we corrected each error.

IoU (0 for different categories). The predictions with IoU less than 0.1 for any ground-truth
masks are unmatched, which are not covered in our analysis. Formally, the segmentation
error pixels could be represented as the symmetric difference of Di and G∗

i :

Pi = Di ⊖G∗
i

= (Di −G∗
i )∪ (G∗

i −Di)

= (Di ∩ (G−G∗
i ))︸ ︷︷ ︸

fFP

∪(Di ∩ Ḡ)︸ ︷︷ ︸
bFP

∪(G∗
i −Di)︸ ︷︷ ︸

FN

, (1)

where G =
M⋃

i=1
Gi contains all foreground pixels, Ḡ is its complement set (i.e., all background

pixels). As shown in Equation (1), the segmentation error pixels can be divided into three
orthogonal sets (see Supplementary Material for a detailed derivation). The meaning of each
set is as follows:

• Foreground false positive (fFP): over-segmented pixels which belong to the fore-
ground (Figure 1 (a)), indicating that the model is confusing different foreground in-
stances (e.g. predict only one mask for two adjacent persons).

• Background false positive (bFP): over-segmented pixels which belong to the back-
ground (Figure 1 (b)), indicating that the model incorrectly treats background pixels
as part of the foreground.

• False negative (FN): under-segmented pixels (Figure 1 (c)), indicating that the model
incorrectly treats foreground pixels as background.

Following [3], we quantitatively measure each type of error as the expected mAP im-
provement if we corrected this error. Specifically, for a specific error type (denoted as o),
correcting its corresponding error pixels improves the segmentation results from AP to APo.
The AP gap indicates the severity of the specified error type:

∆APo = APo −AP. (2)

Figure 2 shows the segmentation errors of Mask R-CNN [14] and RefineMask [38]. We
report the results on Cityscapes [13], COCO [24], and COCO-OCC [22] (subset of COCO
validation dataset with more occlusion) datasets for Mask R-CNN and results on Cityscapes
for RefineMask. More analysis can be found in the Supplementary Material. From Figure 2,
we draw two conclusions:
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Figure 3: Overview of the proposed method. The proposed dense contrastive learning mod-
ule can be integrated into Mask R-CNN in a plug-and-play manner. Anchor and positive
samples are randomly selected from the target instance, while negative samples are selected
from the rest of the RoI. Best viewed in color.

• False-negative errors accounted for the majority. Comparing different errors in Fig-
ure 2, the amount of FN errors is significantly more than fFP and bFP (e.g. 18.8% vs.
4.8% and 5.1% on Cityscapes for Mask R-CNN), implying that the model tends to
predict incomplete masks.

• Errors vary on different datasets. The fFP and FN errors are higher on the COCO-
OCC dataset than on the COCO dataset, which can be attributed to the occlusion be-
tween foreground objects and the occlusion of foreground objects by the background,
respectively. FN error accounts for more on the Cityscapes dataset, indicating that the
model yields more FN errors in crowded scenarios such as streets.

4 Dense Contrastive Loss
We first describe the motivation and overview of our method. Then, we present how to
apply dense contrastive learning. Finally, we formalize the overall loss function for end-to-
end training. We use Mask R-CNN [14] as an example, but our method is also applicable
to other frameworks such as RefineMask [38] and SparseInst [12] (see Section 5.2 for the
results).

4.1 Overview
We first briefly review the classical Mask R-CNN baseline. Given an image, Mask R-CNN
first uses a backbone network and a feature pyramid network (FPN) to extract the image-
level features. Then, they go through the region proposal network (RPN) to obtain the box
proposals. These proposals feed into RoIAlign for the corresponding instance-level RoI
features. Based on the RoI features, the RoI heads predict the class, the bounding box, and
the mask of the corresponding instance. Typically, the mask head is a fully convolutional
network containing several convolutional and upsample layers supervised by binary cross-
entropy loss.
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Based on the analysis in Section 3, we argue that instance features supervised only by
binary cross-entropy are sub-optimal. Consistency of features on the same instance is not
guaranteed due to the individual supervision of pixels. To address this issue, we propose a
loss function based on dense contrastive learning, which works in a plug-and-play manner (as
shown in Figure 3). Given the ground-truth instance mask, we sample several pixels from
the mask as anchors or positive samples, and several pixels outside the mask as negative
samples. Then, we extract the corresponding features and apply infoNCE loss [29] to pull
closer those on the same instance. The proposed training strategy encourages the model to
learn a more consistent feature representation for different pixels on the same instance, thus
improving the completeness of the masks.

4.2 Dense Contrastive Learning

Sampling Strategy. For each RoI, we randomly sample the pixels on its corresponding
ground-truth instance mask as positive samples or anchors, and the pixels on the remaining
regions as negative samples. Specifically, for the i-th RoI, we denote the instance mask as Mi
and its complement in the RoI as M̄i

1. Both positive samples Pi and anchors Ai are uniformly
sampled from Mi. Meanwhile, the negative samples Ni are uniformly sampled from M̄i. For
simplicity, we sample the same number of positive samples, negative samples, and anchors,
i.e. |Pi|= |Ai|= |Ni|= K. If the instance mask within an RoI is too large or small to sample
enough points (i.e. |Mi| < K or |M̄i| < K), then we disregard this RoI when computing the
dense contrastive loss.
Dense Contrastive Loss. After obtaining the sampled pixels Pi, Ai and Ni, we perform dense
contrastive learning via the infoNCE loss [29]. For the i-th RoI, the loss function is defined
as

Li
contrast =− ∑

u∈Ai

∑
v∈Pi

log
exp(F̂ i

u · F̂ i
v/τ)

exp(F̂ i
u · F̂ i

v/τ)+∑w∈Ni exp(F̂ i
u · F̂ i

w/τ)
, (3)

where F i is the RoI feature (input for the last layer of the mask head), F̂ i is its L2-normalized
version in the channel dimension. F̂ i

u, F̂
i
v , and F̂ i

w denote the feature vectors corresponding
to the spatial locations of u,v, and w, respectively. Temperature τ is a hyperparameter. The
contrastive loss is the summation of all valid RoIs:

Lcontrast = ∑
i

Li
contrast, if |Mi| ≥ K and |M̄i| ≥ K. (4)

Intuitively, under the supervision of Lcontrast, the features corresponding to the anchor will
be close to the positive samples and away from the negative samples, resulting in better
consistency of features on the same instance.
Learnable Similarity. Empirically, we found that it was suboptimal to define the similarity
of features as cosine similarity directly. Following [9, 37], we add a projection layer φθ (·)
(implemented as two fully connected layers) to make the similarity learnable. The similarity
between the feature vectors f1 and f2 is thus formalized as

sθ ( f1, f2) =
φθ ( f1) ·φθ ( f2)

||φθ ( f1)||2||φθ ( f2)||2
. (5)

1Mi, M̄i Pi, Ai and Ni are all sets of pixel positions.
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λ APbox APseg AP50 AP75

0 37.6 32.4 58.2 29.7

0.2 39.3 34.5 60.6 33.6
0.4 39.0 35.1 60.2 34.1
0.6 39.7 35.0 60.9 33.9
0.8 38.9 35.3 61.1 33.8
1.0 39.6 36.1 61.9 35.9
1.2 39.8 36.5 61.8 35.8
1.4 39.2 35.3 60.1 34.8

Table 1: Results of different loss weight. The
AP of the segmentation continues to increase
as the loss weight increases and reaches satu-
ration at a weight of 1.2.

learnable APbox APseg AP50 AP75

38.8 35.1 60.7 32.9
✓ 39.8 36.5 61.8 35.8

Table 2: Effects of learnable similarity. Learn-
able similarity leads to better performance.

τ APbox APseg AP50 AP75

0.01 38.7 35.0 60.5 33.8
0.04 38.7 35.0 60.4 34.1
0.07 39.8 36.5 61.8 35.8
0.10 39.9 36.4 61.2 36.8
0.13 38.5 35.7 61.3 35.2

Table 3: Results of different temperature. The
best results were obtained when τ = 0.07.

K APbox APseg AP50 AP75

0 37.6 32.4 58.2 29.7

8 38.5 35.1 61.0 34.0
16 39.2 35.3 59.9 34.5
32 39.8 36.5 61.8 35.8
64 38.5 35.9 62.1 35.5

128 38.2 35.1 60.3 32.9

Table 4: Results of different sample numbers.
Too large or too small sample numbers lead to
performance degradation.

4.3 Overall Loss
The overall training loss function contains the original Mask R-CNN loss and our dense
contrastive loss. We denote the loss of Mask R-CNN as Lrcnn (including both RPN and
RoI heads). Then, we introduce the weight λ to balance the newly added loss, giving the
following overall loss form:

L = Lrcnn +λLcontrast. (6)

The model parameters, including the projection layer φθ , are trained in an end-to-end man-
ner.

5 Experiments
Experimental Settings: We mainly conducted experiments on the Cityscapes dataset (with
fine annotations only) [13]. Cityscapes is a real-world dataset on urban street scenes,
containing 2975, 500, and 1525 images as the training, validation and test set, respectively.
Our implementation was based on the popular detectron2 framework. Unless otherwise
specified, Mask R-CNN with ResNet-50 (pre-trained on ImageNet [26]) and FPN as back-
bone was used as the baseline. The training lasted 24000 iterations with a batch size of 8 (on
4× 2080Ti GPUs). All other settings were the same as the default settings of detectron2.

5.1 Ablation Study
In this section, we performed ablation experiments on the different settings of the proposed
method. We used the COCO API for evaluation, which yields slightly lower results than the
standard Cityscapes API, but with more detailed metrics. We reported on box AP (APbox)
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Method COCO APval APtest person rider car truck bus train mcycle bicycle

PointRend [23] 35.8 - - - - - - - - -
Mask R-CNN [14] ✓ 36.4 32.0 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7
BShapeNet+ [21] ✓ - 32.9 36.6 24.8 50.4 33.7 41.0 33.7 25.4 17.8

UPSNet [36] ✓ 37.8 33.0 35.9 27.4 51.9 31.8 43.1 31.4 23.8 19.1
CondInst [28] ✓ 37.5 33.2 35.1 27.7 54.5 29.5 42.3 33.8 23.9 18.9

Mask R-CNN∗ 33.1 28.4 32.9 25.6 49.6 23.7 36.0 22.4 20.1 17.2
w/ Ours 37.1 31.1 37.1 29.1 53.7 25.2 37.7 23.1 22.6 20.4

Mask R-CNN∗ ✓ 37.3 32.0 36.1 29.1 51.8 29.2 38.3 28.0 23.5 19.6
w/ Ours ✓ 38.6 33.5 38.3 30.6 54.2 29.2 38.6 30.4 25.3 21.1

RefineMask [38] 37.6 32.0 37.4 29.3 55.6 26.6 36.5 26.6 23.4 20.8
w/ Ours 39.0 33.6 39.3 30.4 56.9 27.5 40.2 28.3 24.5 21.5

Table 5: Comparison with previous methods on Cityscapes dataset. "✓" indicates pre-
training on COCO dataset. "*" denotes our implementation. "-" means that data is not
available. We report Cityscapes-style results here to be consistent with previous methods.

and segmentation AP (APseg), and segmentation AP at different IoU thresholds (AP50,AP75).
Without specification, we used λ = 1.2,τ = 0.07,K = 32, and applied learnable similarity
as the default setting.

Loss Weight. Since a new loss term was added, we first investigated how to balance it
with the existing loss. We started from 0 and gradually increased its weight λ to obtain
the results in Table 1. The segmentation AP gradually increased as the loss weight increased
and saturated at λ = 1.2. Excessive weight led to performance degradation. With appropriate
loss weight, our model improved the segmentation AP by 4.1% compared to the baseline.
The greater improvement in AP75 indicates the advantages of our method for predicting
more precise masks. The box AP also has a significant improvement (+2.2%), which can be
attributed to the benefits of better instance features for localization.

Learnable Similarity. We verified the necessity for learnable similarity with the experi-
ments in Table 2. The model trained with learnable similarity achieved 1.4% higher segmen-
tation AP than trained with original cosine similarity.

Temperature. Temperature τ can affect the strength of penalties of the contrastive loss on
the hard negative samples. Smaller temperatures lead to more emphasis on to hard nega-
tive samples, and vice versa [30]. We studied the effects of different temperature values in
Table 3. The best results were obtained when τ = 0.07.

Number of Samples. We studied the effect of the different sample numbers and presented
the results in Table 4. Inadequate samples led to insufficient supervision. When the sample
number K was too large, the number of invalid RoIs (with ground-truth mask too large or too
small to be sampled without repetition) increased. For example, when K = 128, about 10%
of the RoI was invalid during training. The absence of RoI led to performance degradation.
We found that K = 32 achieved the best balance. The Supplementary Material provides the
results when |Pi|, |Ai| and |Ni| are not equal.
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Dataset DCL APdev APval AP50 AP75 APS APM APL

COCO [24]
35.4 35.2 56.2 37.5 17.1 37.5 50.4

✓ 36.0 35.7 56.4 38.3 16.9 38.1 51.0

COCO-OCC [22]
- 31.5 52.7 33.4 13.6 27.8 42.0

✓ - 32.3 53.5 33.9 14.3 28.4 43.7
Table 6: Segmentation results on COCO and COCO-OCC dataset. "✓" indicates that trained
with dense contrastive loss (DCL).

Backbone DCL APdev APval AP50 AP75 APS APM APL

Mask R-CNN Swin-T
39.9 39.3 62.2 42.2 20.5 41.8 57.8

✓ 40.2 39.9 62.6 42.7 20.1 43.0 58.3

SparseInst ResNet-50
32.0 31.6 51.4 32.9 12.7 33.3 48.5

✓ 32.4 32.1 51.3 33.9 12.3 34.8 48.9
Table 7: Application on other models on COCO dataset. SparseInst was trained for 73
epochs (half of the original) for faster convergence.

5.2 Overall Results
Comparison with Previous Methods. We compared the proposed method with the previ-
ous methods on Cityscapes dataset in Table 5. To verify the universality of our method on
different models, we also report the results on RefineMask [38]. RefineMask is a multi-stage
refinement model. We applied the proposed loss function to its first stage (instance head).
Our method achieved consistent improvement on different baseline models, improving the
test set AP by 1.6% on the powerful RefineMask baseline. Compared with other methods
such as UPSNet [36] and CondInst [28], our method also yielded superior results. Note
that our method does not introduce any test-time overhead and therefore does not affect the
efficiency.
Results on Other Datasets. We extended our method (with Mask R-CNN) to the COCO [24]
and COCO-OCC [22] (subset of COCO validation set with more occlusion) datasets. The
results are shown in Table 6. Incorporating the dense contrastive loss into the mask head im-
proved the AP significantly. The APval on COCO and COCO-OCC were improved by 0.5%
and 0.8%, respectively. The improvement on COCO-OCC is larger than COCO, indicating
that our method is more advantageous in complex scenes (e.g., occlusion). Compared to the
Cityscapes dataset, the improvement on these two datasets is relatively less. We attribute this
to the differences in the distribution of the datasets. Figure 2 illustrates that the false-negative
errors on these datasets are fewer than on Cityscapes, which limits the gain of our method.
Application on Other Models. We report in Table 7 the results on SparseInst [12] (a re-
cent state-of-the-art real-time method) and Mask R-CNN with larger backbone (e.g., Swin
Transformer [25]). The experiments were conducted on the COCO dataset. For SparseInst,
we applied DCL to the output features of the mask branch. Since proposals are absent from
SparseInst, we use the ground-truth bounding box as the RoI. The RoI features were ex-
tracted using RoIAlign and supervised by DCL in the same way as in Figure 3. Our method
achieves consistent improvement on these recent and stronger baselines.
Analysis on the Improvement. We analyzed the sources of improvement based on the error
analysis tool presented in Section 3. As shown in Table 8, the model trained with our dense
contrastive loss yielded significantly fewer false-negative errors. Meanwhile, fFP and bFP
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APval ∆APfFP ↓ ∆APbFP ↓ ∆APFN ↓
Baseline 32.3 5.0 4.7 21.2
+Ours 36.5 5.4 5.3 18.8

Table 8: Analysis on the improvement. "↓" means the lower the better. Our method signifi-
cantly alleviates false-negative errors.

Dataset Device Epochs DCL Time GPU Mem.

SparseInst COCO V100 73
33.5h 12.4G

✓ 40.0h 12.4G

Mask R-CNN COCO 2080Ti 12
17.5h 7.7G

✓ 21.5h 8.4G

RefineMask Cityscapes 3080 64
8.6h 6.9G

✓ 9.3h 7.0G

Table 9: Computation and GPU memory cost (counted by Pytorch’s API) during training.

errors slightly increased, suggesting a trade-off between the different errors.
Training-time Efficiency. We report the training time and GPU memory usage in Table 9.
Compared to baselines, our method introduced only 10-20% extra training time and negligi-
ble GPU memory increase.
Qualitative Results. We present the visualization results in the Supplementary Material.
Compared with the baseline, our method yielded higher quality and more complete masks,
consistent with the quantitative results in Table 8. The t-SNE visualization (Figure 4) also
verified that our model learns a more compact feature representation.

M
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Figure 4: t-SNE visualization of the instance features. Features corresponding to the fore-
ground and background pixels are shown in red and blue, respectively.

6 Conclusions

We analyzed segmentation errors in instance segmentation and proposed a dense contrastive
loss for alleviating the false-negatives errors. Without introducing any inference overhead,
our method achieved consistent improvement across various baselines and various datasets.
Analysis of the improvement showed that false-negative errors were significantly mitigated.
We hope our work will improve the understanding of errors in instance segmentation and ad-
vance the study of contrastive learning for downstream tasks such as instance segmentation.
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