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1 Comparison of Error Analysis Tools

We compare several error analysis tools in detail in Table S1. The main difference between
our tool and previous works is that we focus on segmentation errors in the instance segmen-
tation task. The previous works are mainly designed for object detection and adapted for
instance segmentation by simply replacing box IoU with mask IoU. Consequently, segmen-
tation errors are coupled with other types of errors (e.g., localization or classification errors)
in these works, making it impossible to analyze the segmentation quality in isolation and to
draw finer-grained conclusions.

Feature COCO [1] UpperBound [3] TIDE [2] Ours
Compact Summary of Error Types ✘ ✔ ✔ ✔
Isolates Error Contribution ✘ ✘ ✔ ✔
Dataset Agnostic ✘ ✔ ✔ ✔
Segmentation Errors ✘ ✘ ✘ ✔
Designed for Instance Segmentation ✘ ✘ ✘ ✔

Table S1: Comparison of error analysis tools. ✔ indicates the toolkit has the specific
feature, and ✘ indicates that it does not. Table extended from TIDE [2]. Our error analysis
tool focuses on segmentation errors, complementing previous works.

Alternatively, our tool can also output compact summary of error types (i.e., one value
per error type) and isolate error contribution, making it easier to compare different types of
errors. It does not rely on additional annotations and therefore can be applied to any instance
segmentation dataset.
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2 Derivation of Segmentation Errors
We provide a detailed derivation on how to decouple segmentation error pixels into three
orthogonal sets. The segmentation error pixels are defined as the symmetric difference of
the prediction Di and its corresponding ground-truth mask G∗
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where G =
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i=1
Gi, X means the complement set of X in the set of all image pixels. These

three sets (denoted as PfFP,PbFP,PFN, respectively) are orthogonal, since
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3 More Error Analysis Results
We analyze the segmentation errors of more models on the COCO dataset in Figure S1.
The error distribution varies between models. Models with similar structures (e.g., HTC [4],
Mask Scoring R-CNN [7], PointRend [8]) have similar error distributions, while those with
different structures (e.g., one-stage vs. multi-stage) have different error distributions.

Compared to the multi-stage models, CondInst [9] and SOLO [10] generated fewer FN
errors and more bFP errors, while Mask2Former [5] and QueryInst [6] yielded more bFP
errors. The results are as expected since CondInst and SOLO do not rely on the box proposals
and can therefore predict more complete masks. The bFP error can be attributed to that
instance kernels predicted by these models easily respond to the background features.

4 More Qualitative Results
We present some qualitative results on the Cityscapes validation set in Figure S2. Compared
to the Mask R-CNN baseline, our method yielded higher quality and more complete masks,
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(h) Mask2Former

Figure S1: Error analysis of different models on the COCO validation set. The error distri-
bution varies between models.

#Anchor #Positive #Negative AP AP50

32 32 32 37.1 63.2
64 32 32 36.7 62.6
32 64 32 36.8 63.4
32 32 64 35.5 61.1
16 32 32 37.0 63.8
32 16 32 35.7 62.3
32 32 16 36.0 62.8

Table S2: Results of different number of samples. Cityscapes-style segmentation AP is
reported.

especially in complex scenarios, such as occlusion (Figure S2a,c), low illumination (Fig-
ure S2d). Our method also produced better results for the extreme crowded cases (see the
yellow box in Figure S2f). Beyond that, we found that our predictions retain more details
(see blue boxes in Figure S2b,d).

5 Different Number of Samples
Table S2 shows the results using different numbers of samples. AP decreases slightly when
the number of samples varies. We attribute this to the trade-off between the number of
samples and the number of valid RoIs.
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Figure S2: Qualitative Results on the Cityscapes validation set. Our method yielded higher
quality and more complete masks compared to the Mask R-CNN baseline. Best viewed in
color with zoom-in.


