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Abstract

Computed Tomography Imaging Spectrometers (CTIS) capture dense spectrum of
dynamic scenes as compressed 2D sensor measurements. Model-based Hyper-Spectral
(HS) image reconstruction algorithms devised for such systems are typically very slow,
sensitive to the selected data and noise models, and can only restore HS images with poor
spatial resolution. On the other hand, deep learning-based approaches, once trained, are
capable of performing the reconstruction in real-time and are more suitable for high
frame-rate applications but generally suffer from limited generalization capabilities. In
this paper for the first time, we jointly address the issues of reconstruction speed and
spatial resolution of CTIS through a simple and interpretable deep learning architecture
partially inspired by the Filtered Back-Projection (FBP) algorithm used in conventional
CT scans. Our model is able to exploit aliased pixel information in CTIS images to
recover spatially super-resolved HS cubes. Experimental results on simulated and real
data demonstrate the effectiveness of our approach not only in reconstruction quality, but
also in computation time and generalization ability.

1 Introduction
Different from scanning-based imaging spectrometers, snapshot systems offer greater flex-
ibility and can capture full spectrum of still as well as dynamic scenes in a single coded
2D measurement achieved by multiplexing spatial and spectral information using a com-
bination of lenses, dispersive elements, and coded aperture masks. Further processing is
required to reconstruct a 3D HS cube which is usually a time consuming operation that im-
pedes the real-time applicability of theses systems. Model-based reconstruction approaches
exploit iterative schemes along with some prior knowledge constraints. However, even with
hardware-enabled acceleration, the time required to reconstruct a single HS image does not
meet the basic requirements for high frame-rate applications. Alternatively, deep learning-
based methods learn complex non-linear mapping between pairs of 2D measurements and
the corresponding 3D HS cubes in a supervised manner and once trained these networks can
be used to infer HS data in real-time.
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Figure 1: Left: Our proposed network (HSRN) reconstructs coarse spatio-spectral cubes
generated by LBP. These are added to a high resolution residual generated by the 3D Sub-
Pixel Convolution module (3D-SPC) in order to build a spatially super resolved HS cube.
Right: Reconstructed HS images with ×2 and ×4 the resolution of the 0th diffraction order
are shown in sRGB space and compared with a bicubic up-sampled reference cube. Spectral
density curves are shown along with the Pearson correlation coefficient between the pre-
dicted and ground truth curves.

At the same time, it is well known that the generalization capability of such models is
limited by the training environment further hindering their usefulness in practice. We pro-
pose a lightweight network architecture (we named it HSRN) to efficiently reconstruct spa-
tially super-resolved HS cubes from 2D measurements generated by a CTIS system [6, 30]
owing to its high spectral resolution and the availability of multiple tomographic projec-
tions each carrying distinct and complimentary spatial and spectral information needed to
reconstruct the latent HS cube. To this end, we propose to learn in an end-to-end fashion
the Filtered Back-Projection (FBP) algorithm used in traditional CT scans inside the feature
space thus enabling greater interpretability of our network. In addition, we propose a HS
image Super-Resolution (SR) module exploiting side information present in higher order
projections through 3D deconvolution layers. To the best of our knowledge, this is the first
work to handle jointly hyper-spectral image reconstruction and super-resolution for CTIS
systems. Our contributions can be summarized as the following:

• A simple yet efficient network architecture capable of reconstructing spatially super-
resolved HS cubes in real-time (up to 30 fps for a cube of size 400× 400× 31) from
CTIS measurements.

• A novel end-to-end Learned Back-Projection (LBP) layer that enables superior recon-
struction quality.

• The effectiveness of our model is validated through exhaustive experimenting on syn-
thetic as well as real CTIS images: it outperforms state-of-the-art approaches.
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2 Related Work

HSI systems. Early spectrometers were predominantly scanning devices such as pushb-
room [31], whiskbroom [5], and tunable filter cameras [16] which are capable of capturing
images with high spatial and spectral resolution but at the same time they are fairly large
and cumbersome devices incorporating multiple moving parts and requiring long acquisition
times. Owing to the quick advancements in compressive sensing and deep learning, snapshot
spectrometers or even conventional RGB cameras [18, 34] became widely used to capture
dense spectrum of dynamic scenes, see [3, 14] for comprehensive surveys. Coded Aperture
Snapshot Spectral Imaging (CASSI) systems [19, 36] stand out as one of the most used de-
vices for HSI. However, they offer poor image quality as the spatial resolution is degraded
due to the use of coded aperture masks. In addition, its spectral resolution is limited by the
sensor pixel pitch along with the non-linear dispersion introduced by the prism leading to a
trade-off between spatial and spectral resolution. Alternatively, in a CTIS system [6, 13, 30]
light is dispersed into multiple tomographic projections via a Diffractive Optical Element
(DOE) forming multiple projections of the latent HS cube on the image sensor. Indeed,
CTIS practical applicability is reduced by the poor spatial resolution of its 0th diffraction
order which determines the resolution of the reconstructed HS image [10, 11, 15]. Further-
more, no previous work has tackled this problem so far, at least from a computational point
of view. In this paper, we exploit sub-pixel displacements present in higher diffraction orders
to perform image SR and reconstruct HS cubes with up to ×4 the resolution of the 0th order
hoping to pave the way for more research into CTIS technology.

HS image reconstruction. Several approaches proposed to solve the problem of recon-
structing a 3D HS cube from CASSI measurements iteratively with image priors in a Maxi-
mum A Posteriori (MAP) estimation framework. IST [9] and TwIST [4] incorporated a TV-
norm regularization term to encourage sparsity of the solution. Liu et al. proposed DeSCI
[26], exploiting a weighted nuclear norm regularizer solving a rank minimization problem.
Aside from hand-crafted priors, a new class of optimization algorithms based on variable
splitting techniques such as the Alternating Direction Method of Multipliers (ADMM) and
Half Quadratic Splitting (HQS) were proposed to decouple data fidelity and prior terms
treating the latter as a plug-and-play denoiser module using off-the-shelf powerful denois-
ers such as DBM3D [8] or even a trained CNN as in [7, 27, 47]. Even though impressive
performance has been achieved using model-based approaches, reconstruction time is exor-
bitantly high reaching up to 4.6 hours in [27]. In an attempt to combine the interpretability
and flexibility of model-based approaches and the reconstruction speed of CNNs at inference
time, unrolled network architectures have been introduced by [37, 38, 44, 46]. For CTIS the
Expectation-Maximization (EM) algorithm has been predominantly used in reconstruction
[35] as in most CT based systems. The EM is a Maximum-Likelihood (ML) solver that
cannot handle priors and is very sensitive to the presumed noise and system models leading
to sub-optimal performance and poor reconstruction quality, Other approaches, such as low
rank based estimation and superiorization have been proposed in [22] and [15]. Recently a
GPU accelerated EM variant has been introduced by White et al. [39] exploiting spatial shift
invariance of the system matrix reaching a significant speedup in reconstruction time but
still with very low spatial resolution. Lately, deep learning-based approaches started gain-
ing attraction for CTIS systems: Huang et al. [17] proposed to learn end-to-end mapping
through a multi-branch CNN. They have also introduced a follow-up hybrid approach [1]
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combining a CNN sequentially with an EM solver. Zimmermann et al. [48] implemented an
initial reshaping layer enabling 3D processing of high dimensional input data to account for
spatio-spectral correlations within multiple higher diffraction orders which is then followed
by a U-Net like architecture used to refine the estimated HS cube.

Image SR. Recent approaches for recovering a High-Resolution (HR) image from a down-
sampled and corrupted Low-Resolution (LR) measurement are mostly based on deep learn-
ing models due to their high capacity to learn complex non-linear LR/HR mappings and
effectively reconstruct visually appealing high frequency details [21, 25, 33]. Multi-frame
image SR on the other hand exploit side information provided by different frames as aliasing
that is caused by relative camera movement or object movement within the scene. The com-
plementary information present in multiple frames is combined and mapped into a higher
resolution pixel grid with high spatial fidelity: such methods can be divided into model-
based approaches [24, 40] and deep learning-based ones [12, 20].

3 Network Architecture
We propose to reformulate, in a learning context, intuitive yet effective algorithms used in CT
scans, i.e., the back-projection and in particular its enhanced version FBP: by exploiting the
representation capacity and flexibility of CNNs we show that it is possible to achieve superior
spectral reconstruction performance with a lighter network architecture. Furthermore, in
this way we also preserve some degree of network interpretability which is usually hard to
achieve in standard learning-based approaches.
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Figure 2: Back-projection of multiple
2D CTIS projections into a 3D HS cube.
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Figure 3: LBP architecture inspired by the fil-
tered back projection algorithm.

3.1 Learned Back Projection (LBP)
In CTIS systems the underlying image formation model can be written as:

g = H f + ε (1)

where g∈R(MN)×1 and f ∈R(HWΛ)×1 are respectively the vectorized coded 2D sensor image
and the latent 3D HS cube to be reconstructed with Λ spectral channels. H ∈ R(MN)×(HWΛ)

is the system matrix, and ε is an additive noise term. The back-projection operation (see
Fig. 2) can be approximated by mapping a low dimensional 2D projection into the higher
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dimensional 3D HS space by simply repeating the projection across the spectral dimension
and summing all back-projected spectral slices from multiple projections and stacking them
channel-wise producing a rendition of the latent 3D HS cube. Mathematically this operation
correspond to the transpose of the system matrix HT .

Given {gp}P−1
p=0 projections (including the 0th order), we denote Gp the reshaped version

of gp in 3D space were we crop Λ slices of size H ×W via a sliding window (see Fig. 3) and
stack them channel-wise ending up with a 3D cube of shape H ×W ×Λ. Notice that each
channel of this cube contains the latent spectral band to be reconstructed, in the case of the
0th order we just repeat the image across the spectral dimension. The back-projected image
f BP is formed by summing up all {Gp}P−1

p=0 for a given spectral band λ :

f BP(x,y,λ ) = ∑p Gp(x,y,λ ) for λ = 1, ...,Λ (2)

f BP contains coarse spatio-spectral information of the latent cube but at the same time it is
heavily blurred with halo-like effects and has a low SNR. To overcome this issue, the pro-
jections are first filtered out using a high pass Ramp filter [32] with kernel w, then the back-
projection is performed, the combined operation is known as the filtered back-projection.
Rewriting (2) to account for w results in:

f FBP(x,y,λ ) = ∑p w∗Gp(x,y,λ ) for λ = 1, ...,Λ (3)

where ∗ represents the 2D convolution. Notice that w is a fixed filter that mainly enhances
the contrast within each projection to avoid blurring, but at the same time it introduces high
frequency noise and ringing artifacts due to the structure of such filter. Furthermore, the
back-projection evenly maps 2D projected data back into HS space as it is a global operation
and through the summation in Eq. (3) it does not take into account the different contributions
of each projection, e.g., the fact that the amount of dispersion differs for each projection.
We propose LBP with the aim to learn more complex non-linear relationships among CTIS
projections but also within each projection. In particular, intra-projection correlations are
learned by means of a 3D deconvolution layer [43]: we chose deconvolution instead of
a normal convolution layer to restore high order image features and "reverse" the spatio-
spectral multiplexing in the input. In more detail, as illustrated in Fig. 3, we form a 4D
hyper-cube G ∈ RP×H×W×Λ with P channels corresponding to {gp}P−1

p=0 and apply a 3D
deconvolution with N 3D filters W 3 = {w3

i }N
i=1 that produces a feature map F ∈RN×H×W×Λ.

Inter-projection correlations are learned via 2D deconvolution layers: for each spectral band,
all sub-channels from F carrying distinct spatial and spectral information of the same band
are concatenated to form {Fi}N

i=1 ∈ RN×H×W and fed into Λ 2D deconvolution layers with 1
output channel each. Lastly, the Λ output bands are concatenated channel-wise producing a
coarse spatio-spectral version of the latent HS cube (see Fig. 1).

3.2 Hyper-spectral Image Super-resolution
Each local PSF generated by the DOE for a given projection in the CTIS sensor image
differs slightly for each wavelength and for each higher order projection: in addition to sub-
sampling by the sensor pixel grid, each diffracted order contains aliasing which provides
distinct spatial information needed to reconstruct a spatially super-resolved HS image. The
setting can be viewed as if each projection was a unique view of the smeared latent HS cube.

Differently from standard multi-frame image SR where sub-pixel shift can be estimated
for correct image registration, spectral and spatial multiplexing makes it harder to work with
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Figure 4: Simplified schematic of the 3D deconvolution operation with the filter’s receptive
field (left) and 3D-SPC module with the sub-pixel shuffling layer (right).

such information in CTIS. However, given the fact that sub-pixel displacements are mainly
detected across image edges and that the smearing direction for each projection preserves
image edges along said direction, e.g., vertical edges are preserved in vertical higher order
projections and so on (see Fig. 4 (left)), we exploit such observations and treat the SR sub-
problem in a residual learning context where our SR module restores high resolution image
features like edges, i.e., high spatial frequencies, that are summed-up with the coarse spatio-
spectral cube generated by LBP.

Still, the finite number of projections provides limited aliased information which further
motivates the use of deep-learning based approaches in this case. In particular, inspired by
spatio-temporal processing in video SR [23] we use 3D deconvolutions [43] to link spatial
information scattered across multiple higher diffraction orders and learn more complex high
level features. We propose an adaptation of ESPCN originally introduced by Shi et al. [33]
for single image SR. Because convolutions are carried out in low resolution space, such ap-
proach is very efficient yet it achieves competitive image restoration results. More precisely,
we propose a new 3D Pixel Shift (PS3D) operation exploiting side spatial information to
perform SR via 3D periodic shuffling:

PS3D(T )
(

x,y,λ
)
= T

[
s ·mod(y,s)+mod(x,s)+λ ,⌊x/s⌋,⌊y/s⌋,λ

]
for λ = 1, ...,Λ (4)

Where T ∈Rs·s×H×W×Λ is a 4D feature map obtained from G∈RN×H×W×Λ (see Section 3.1)
by applying multiple 3D deconvolution layers with 128, 64, 32, and s× s output channels.
We refer to the whole block as 3D Sub-Pixel Convolution (3D-SPC). Eq. (4) implies that for
a given spectral band λ , s× s SR pixels are obtained by periodically shuffling low-resolution
pixels from s× s feature cubes (see Fig. 4 (right)). As illustrated in Fig. 4 (left) each 3D
filter’s receptive field sees a different 3D signal of the same HS image region each containing
aliased pixel information and distinct spectral and spatial cues depending on the smearing
direction. Mathematically such convolution can be expressed as:

Out = w3 ∗{Gp}P−1
p=0 (5)

where p is the projection index, w3 is a 3D filter, Gp ∈ RH×W×Λ is the reshaped tensor from
a given projection gp=DHpWp fHR where D is a down-sampling operator, Hp is a dispersion
matrix, Wp is an affine warping matrix for sub-pixel displacement, fHR is the latent cube to
be reconstructed: notice that each kernel of w3 is applied on {Gp}P−1

p=0 with each channel
carrying distinct yet complimentary spatial information.

A refinement network consisting of 7 convolution layers with 64 filters each and ReLU
activations further refines the intermediate prediction from LBP and 3D-SPC stages. The

Citation
Citation
{Li, He, Du, Zhang, Xu, and Tao} 2019

Citation
Citation
{Zeiler, Krishnan, Taylor, and Fergus} 2010

Citation
Citation
{Shi, Caballero, Husz{á}r, Totz, Aitken, Bishop, Rueckert, and Wang} 2016



MEL et al.: RECONSTRUCTION AND SR OF HS CTIS IMAGES 7

output is summed up with a super-resolved 0th order using the 2D-SPC layer from [33].
Notice that even without such residual connection the network output will not be heavily
affected. Rather, we observe that such connection introduces robustness to noise and leads
to more stable training with faster convergence on noisy data in accordance with [45].

4 Experimental Evaluation

4.1 Data and Training Setup
We evaluate the performance of our approach (HSRN) on synthetic CTIS data generated
from three publicly available datasets: TokyoTech-31 [29], CAVE [41], and ICVL [2]. We
randomly choose ∼ 75% of images as training data and the rest for testing. Results on
a fourth dataset (Hyperspectral Video [28], used to assess real-time performance) are in
the suppl. mat. We simulate CTIS images with 200 spectral bands spanning the range
from 420nm to 720nm for TokyoTech-31 and 400nm to 700nm for CAVE and ICVL using
Fourier optics (refer to the suppl. mat for further details on CTIS image simulation). In
particular, a ground truth HS cube interpolated across the spectral dimension is convolved
with a wavelength-dependent PSF to generate a CTIS sensor image with 14 higher diffraction
orders (see Fig. 1). In case of noisy inputs we introduce shot noise simulating a quantum
full well capacity of 1e3 photons. The training data is augmented using random rotation and
flipping of the ground truth HS cubes before simulating the sensor image.

First of all we evaluate spectral reconstruction performance without the SR task. Then,
we evaluate the network generalization capability via cross dataset validation. Later, we
report results of HSRN for joint HS reconstruction and SR with ×2 and ×4 spatial resolution.
Finally, we present some reconstruction results on a real image taken by our CTIS system.
For all setups, except otherwise specified, we train the network using Adam optimizer with
a learning rate of 1e−4 for 500 epochs with the following loss function:

L(ISR, IGT
SR ) = MSE(ISR, IGT

SR )+ γ ·MAE(ISR, IGT
SR )+MSE(ILR, IGT

LR ) (6)

I.e., the first loss component is given by the MSE between the ground truth super-resolved
HS cube IGT

SR and the estimated one ISR. The additional use of the MAE is motivated by the
fact that it better preserves high spatial frequencies, we balance between the two components
with a parameter γ set to 0.1. In order to force LBP to produce coarse spatio-spectral images
we introduce an additional MSE loss term between the output of LBP ILR and the s-fold
down-sampled reference cube IGT

LR .

4.2 Experimental Results
HS reconstruction: Quantitative results on HS cubes of size 100× 100× 31 for our ap-
proach are shown in Tab. 1 along with qualitative results in Fig. 5. We compared them with
Zimmerman et al. [48] and Ahlebæk et al. [1]. Since both competing approaches did not
tackle the problem of spatial super-resolution, for this experiment we set the scale factor s
to 1, thus reducing the sub-pixel shift layer to an identity mapping. See the suppl. mat. for
details on the implementation of competitors. HSRN is able to outperform competing ap-
proaches on all three datasets with fewer trainable parameters and faster reconstruction time.
More in detail, Zimmermann et al. [48] is capable of outperforming [1] with a much lighter
model size, but is in turn outperformed by our approach that is also lighter. Fig. 5 shows
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three reconstructed HS cubes from TokyoTech-31, CAVE, and ICVL converted to sRGB
space. HSRN is able to produce better spatial and spectral distributions with less artifacts
such as color leakage and blurring.

Method #Params (M) Time (s) TokyoTech-31 CAVE ICVL
(CNN/EM) RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑

Ahlebæk et al. [1] † 26.6 0.05 / ≥ 10 0.035 28.849 0.872 0.039 28.708 0.823 0.021 33.896 0.881
Zimmermann et al. [48] 1.5 0.017 / - 0.028 33.033 0.917 0.024 34.448 0.941 0.005 47.497 0.991

HSRN (ours) 0.9 0.010 / - 0.025 33.809 0.941 0.018 37.282 0.964 0.004 48.470 0.995

Table 1: Quantitative comparison on multiple HS datasets with the two competing CTIS ap-
proaches. (†) Network architecture modified to account for the new input/output dimensions.

HS & SR reconstruction: HSRN is able to reconstruct HS cubes with a ×2 and ×4 reso-
lution w.r.t. the 0th diffraction order. Quantitative performance results are shown in Tab. 2(a)
along with reconstructed samples in Fig. 6. We compare HSRN performance with two se-
quential approaches where we use the HSRN reconstruction stage followed by either: (i) a
bicubic up-sampling with refinement through multiple convolution layers trained separately
or (ii) by the original ESPCN [33] network. In the easier case of ×2 SR, both sequential
approaches are able to achieve satisfactory performance but still significantly lower than the
one achieved by HSRN and in the ×4 SR case they fall short of achieving acceptable results
while HSRN preserves high PSNR scores (up by roughly 7 dB on ICVL compared to [33]).
Notice that the reconstruction speed on an A6000 GPU of a 400×400×31 HS cube is about
0.033s.

Cross dataset validation: We further test the generalization ability of HSRN on TokyoTech-
31 and CAVE by training the network on one dataset and testing on the other (we did the
test in both directions). We compared results with [48] since it is the best competitor. We
train both architectures to generate HS cubes with 29 spectral bands (420 → 700nm) with
the same spatial resolution of the 0th order, furthermore we show the results of HSRN at
×2 spatial-resolution. All evaluation metrics reported in Tab. 2(b) prove the generalization
capability of HSRN where it achieves better performance with respect to [48] at the base
resolution and maintains good performance at ×2 SR.

4

1 2

3

Figure 5: Reconstruction results of HSRN as well as the two competitors on three different
benchmarks with HS cubes of size 100×100×31.
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Data Scale HSRN (ours) Bicubic+CNN Shi et al. [33]

RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑
TokyoTech-31 ×2 0.026 34.738 0.945 0.033 33.495 0.914 0.029 33.030 0.928

CAVE ×2 0.018 37.244 0.956 0.024 35.313 0.942 0.022 35.538 0.944
ICVL ×2 0.011 42.065 0.972 0.025 39.371 0.958 0.018 40.623 0.965

TokyoT. + CAVE ×4 0.033 32.731 0.907 0.078 24.556 0.844 0.057 27.375 0.888
ICVL ×4 0.012 39.661 0.955 0.061 29.065 0.889 0.036 32.732 0.902

(a) Spatial SR and HS reconstruction results.

Scale TokyoTech-31 → CAVE CAVE → TokyoTech-31
RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑

Zimm.et al. [48] ×1 0.025 (↑13.6%) 33.539 (↓4.5%) 0.917 (↓3.2%) 0.058 (↑114.8%) 29.931 (↓10.7%) 0.895 (↓2.9%)
HSRN (ours) ×1 0.022 (↑4.5%) 35.164 (↓1.6%) 0.948 (↓2.1%) 0.034 (↑47.8%) 31.052 (↓10.2%) 0.918 (↓2.6%)
HSRN (ours) ×2 0.022 (↑37.5%) 34.912 (↓8.4%) 0.930 (↓3.4%) 0.033 (↑50%) 31.687 (↓13%) 0.922 (↓3%)

(b) Cross dataset validation of HSRN and [48] (increase/decrease percentages in blue).

Method Time Checkerboard Butterfly
(CPU-s) RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑

SS-CASSI [27] 16911 0.08 18.536 0.611 0.025 29.322 0.799
GAP-TV [42] 17 0.055 21.975 0.700 0.027 27.446 0.884
DeSCI [26] 4465 0.055 21.975 0.700 0.019 29.191 0.909

HSRN (ours) 0.1 0.022 29.186 0.898 0.010 35.944 0.956
(c) Comparison with CASSI-based reconstruction approaches.

LBP 3D-SPC Residual TokyoTech-31 (w/ shot noise)
PSNR↑

✗ ✓ ✓ 30.214
✓ ✗ ✓ 30.521
✓ ✓ ✗ 31.501
✓ ✓ ✓ 31.832

(d) Ablation experiments.

Table 2: Quantitative results in different settings.
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Figure 6: Hyper-spectral and super-resolution image reconstruction results.

Comparison with CASSI-based reconstruction methods: We showcase the suitability of
CTIS systems for HSI beyond the spatial resolution limitations by comparing reconstruction
performance with HS reconstruction methods designed for CASSI system of HS cubes of
size 400× 400× 29. Tab. 2(c) compares HSRN, that performs joint spectral reconstruction
and ×4 SR, with model-based approaches for CASSI, that optimize directly on a super-
resolved measurement corrupted by an aperture mask. Even with a low resolution input
HSRN is able to reconstruct HS cubes with higher spatial and spectral accuracy achieving a
gain of 6 to 8 dB of PSNR. Visual results in Fig. 7 confirm the numerical ones showing how
HSNR restores very fine image details on the checkerboard and butterfly images.
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Figure 7: Reconstruction of the checkerboard (left) and the butterfly (right) images.

Results on real data: We built a CTIS prototype that features a DOE with 12 higher
diffraction orders and a 1MP monochrome sensor (see the suppl. mat for further details
on the real setup and on the data acquisition procedure). HSRN has also been trained and
tested on real sensor measurements taken from it. The network generates HS cubes with
spatial resolution of 278× 278 pixels, that is ×2 the resolution of the 0th diffraction order
and 25 spectral bands spanning the range from 455nm to 695nm. We show a sample of a
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Figure 8: Sample of a reconstructed image from CTIS real data.

reconstructed cube in Fig. 8 in sRGB space together with 3 individual spectral bands and
selected spectra of two image regions.

Ablation study: We evaluate the contribution of each module of HSRN by testing the
network performance without said module. The network was trained for 250 epochs in all
ablation experiments and tested on TokyoTech-31 dataset with shot noise. Tab. 2(d) shows
how each component gives a relevant and non-overlapping contribution to the results.

5 Conclusion and Discussion

We proposed a joint approach for HS reconstruction and SR from CTIS data tackling for the
first time the major shortcomings of such systems and providing an efficient model capa-
ble of performing reconstructions in real-time. By exploiting side information from higher
diffraction orders HSRN was able to produce HS cubes with fine spatial details with up to
×4 the spatial resolution of the 0th diffraction order. That being said, the main limitations
of this approach are two-fold: Spectral-wise, small angles of parallel projection, i.e., the
amount the HS cube is smeared in a given projection, may hinder the reconstruction qual-
ity as spectral bands severally overlap each other at the sensor and the network struggles to
accurately resolve them. Spatial-wise, enough higher order projections are needed to reach
acceptable reconstruction accuracy specially for large SR factors, e.g.,×4, as more comple-
mentary information would be available which in turns require larger sensor area. Further
research will focus on improving the real CTIS system and on evaluating HSRN on real data
from the improved setup.
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