
ZHANG. L. ET AL.: MUTUAL CONTRASTIVE LOW-RANK LEARNING 1

Mutual Contrastive Low-rank Learning to
Disentangle Whole Slide Image
Representations for Glioma Grading

Lipei Zhang1

lz452@cam.ac.uk

Yiran Wei2

yw500@cam.ac.uk

Ying Fu3

fuying@bit.edu.cn

Stephen Price2

sjp58@cam.ac.uk

Carola-Bibiane Schönlieb1

cbs31@cam.ac.uk

Chao Li (corresponding author)1,2

cl647@cam.ac.uk

1 Department of Applied Mathematics
and Theoretical Physics
University of Cambridge

2 Department of Clinical Neuroscience
University of Cambridge

3 School of Computer Science and
Technology
Beijing Institute of Technology

Abstract

Whole slide images (WSI) provide valuable phenotypic information for histological
assessment and malignancy grading of tumors. The WSI-based grading promises to pro-
vide rapid diagnostic support and facilitate digital health. Currently, the most commonly
used WSIs are derived from formalin-fixed paraffin-embedded (FFPE) and Frozen sec-
tion. The majority of automatic tumor grading models are developed based on FFPE
sections, which could be affected by the artifacts introduced from tissue processing. The
frozen section exists problems such as low quality that might influence training within
single modality as well. To overcome these problems in the single modal training and
achieve better multi-modal and discriminative representation disentanglement in brain
tumor, we propose a mutual contrastive low-rank learning (MCL) scheme to integrate
FFPE and frozen sections for glioma grading. We first design a mutual learning scheme
to jointly optimize the model training based on FFPE and frozen sections. In this pro-
posed scheme, we design a normalized modality contrastive loss (NMC-loss), which
could promote to disentangle multi-modality complementary representation of FFPE
and frozen sections from the same patient. To reduce intra-class variance, and increase
inter-class margin at intra- and inter-patient levels, we conduct a low-rank (LR) loss.
Our experiments show that the proposed scheme achieves better performance than the
model trained based on each single modality or mixed modalities without reducing the
efficiency of inference, and even improves the feature extraction in classical attention-
based multiple instances learning methods (MIL). The combination of NMC-loss and
low-rank loss outperforms other typical contrastive loss functions. The source code is in
https://github.com/uceclz0/MCL_glioma_grading.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction
Glioma is the most frequent malignant primary brain tumor, characterized by remarkable
infiltration and tumor heterogeneity [18, 19, 40]. According to the World Health Organiza-
tion (WHO) classification, glioma is classified into four grades, where grade IV represents
the most aggressive type, and lower grade glioma (LGG), i.e., grades II and III, are less ag-
gressive [18, 19]. Glioma grading has crucial significance for treatment planning and risk
stratification towards precision medicine [15, 16, 37]. The current practice of glioma grading
is based on the histology assessment of tumor specimens, which is time-consuming and re-
quires high professional expertise. Therefore, an accurate and automatic approach to glioma
grading based on the WSIs promises to provide rapid diagnostic support for timely clini-
cal decision-making. Furthermore, a computer-assisted method could help facilitate digital
health and enhance the accessibility of medical resources.

The FFPE tissue section is generally used as the diagnostic standard in clinical practice,
which can be used for long-term storage because of formalin-fixed paraffin-embedded. Due
to the gigapixel size of the images and the complexity of tumor tissue, splitting WSI into
small patches is used as an effective method in model training [13, 33]. By using this op-
eration, previous studies proposed machine learning approaches based on feature engineer-
ing [25, 34]. Although providing reasonable performance, these approaches were limited
to model generalizability due to the less robust features extracted from diverse tumor tis-
sue. Recently, most state-of-the-art models employed the deep transfer learning approach to
transfer the pre-trained weights from ImageNet [8, 13, 27, 33]. These deep learning meth-
ods usually neglect the correlation among different instances because patches are typically
described by weak annotation such as a global label. Therefore, some researchers proposed
some attention-based multiple instance learning (MIL) methods by integrating all patches
from one WSI [12, 21, 31]. However, all previous studies only consider extracting features
or classification on FFPE sections. These studies might be affected by the bias of FFPE tis-
sue. Moreover, a single section modality may not facilitate learning relevant image represen-
tations for tumor grading. Importantly, the artifacts introduced by formalin could affect the
interpretation of histological specimens [22]. Specifically, the procedure of prefixation and
fixation could influence the morphological quality of FFPE specimens [3]. These artifacts
could pose particular challenges to the model training based on WSI. In parallel, another
modality of WSI from frozen tissue procedure provides a rapid approach to tumor grading
to guide intra- or peri-operative clinical decisions. Although frozen sections typically con-
tain limited tissue, the sample hydration and cellular morphology of the frozen tissue can
be preserved at a natural state [7], which may be crucial for tumor grading. However, the
frozen sections also exist that some potential problems, such as poor quality, influence the
performance [20]. Hence, adopting two modalities could promote extracting significantly
complementary information for tumor grading by a multi-modality training scheme.

The rising mutual learning scheme promises to jointly optimise WSI representations
across FFPE and frozen sections. Mutual learning [41] was initially proposed to facilitate
direct knowledge distillation based on joint training scheme. Later, a hierarchical archi-
tecture with multiple classifier heads was proposed to improve model generalisation [32].
Additionally, peer mutual learning was proposed for online unified knowledge distillation
[36]. Mutual learning was also successful in classification tasks based on audio-video data
[2]. However, the classic losses used in mutual learning may not be able to extract extra
complementary information from the latent spaces of multi-modality. On the other hand,
contrastive loss [5, 11] has shown the capacity of extracting complementary representations
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from latent vectors. Therefore, introducing a contrastive loss into mutual learning schemes
could allow learning complementary representations jointly from multiple modalities with
better generalisation, such as joint learning on visual-textual information [39] and predicting
isocitrate dehydrogenase mutation of glioma [35]. Here we hypothesise that a mutual con-
trastive learning scheme could achieve better performance in tumour grading based on FFPE
and frozen sections.

However, the contrastive loss is only about the variance of inter-modality rather than
intra-class. Based on the diversity characteristic of brain tumors, cancer cells are geneti-
cally aberrant and can be divided into different sub-types at each grade [26], and there are
relatively similarities between different grades [23], which causes intra-class variance and
decreases the inter-class margin. There are potential solutions that aim at solving these prob-
lems, such as pairwise or triplet losses [30]. As a result, they carry an extra computation
and learning burden in selecting and computing multiple pairs or triplets. In addition, the
noised images will introduce uncertainty in the training phase as well. Therefore, some re-
searchers adapted low-rank constraint to explicitly improve the discriminative capacity on
natural images without specific pairing and reduce uncertainty from noised data. The low-
rank constraint is achieved via a linear transformation enforcing the minimum rank of each
class feature sub-matrix, and an orthogonalization constraint on the matrix of features of
all classes [14, 28]. Meanwhile, unlike the well-known cross-entropy loss computed on
each paired data vectors individually, low rank is able to globally optimize the lowest-rank
representation on a collection of vectors, which will be more robust for noised data [17].
Based on these methods, a multi-modality mutual contrastive low-rank learning scheme be-
comes promising, which could simultaneously achieve disentangling representation from
multi-modal and reducing intra-class variance, increase inter-class margin at intra- and inter-
patient levels.

In our paper, we first hypothesize that integrating FFPE and frozen sections could train
a more robust model to learn the high-level representations reflecting tumor malignancy,
with less bias from the artefacts caused by tissue processing and low quality. To achieve
this goal, we design a parallel mutual learning scheme to facilitate the integration of FFPE
and frozen sections in model training. In this scheme, we design a normalised multi-modal
contrastive loss (NMC-loss) to disentangle representation with the sphere projection [10].
Meanwhile, we adopt low-rank loss to promote latent vectors from the same class to lie in
a linear sub-space by lowering the matrix rank and latent vectors at inter-class being in an
orthogonal sub-space, which achieves better discriminative representation disentanglement
at the intra- and inter-patient levels. Moreover, our model could perform prediction based
on single modality in the testing phase without increasing the inference time and parameter
number of the backbone, promising to tackle the challenge of data scarcity.

To our best knowledge, this is the first multi-modality mutual contrastive learning ap-
proach for glioma grading in the field of digital pathology. Our contributions include:

- a mutual contrastive low-rank learning (MCL) scheme for joint optimization of model
training based on the WSIs of FFPE and frozen sections.

- an NMC loss to improve the ability to disentangle multi-modality representations in the
mutual learning process.

- a low-rank loss to reduce intra-class variance, and increase inter-class margin at intra-
and inter-patient levels.
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2 Methods

Figure 1: The pipeline of gliomas grading on FFPE sections and frozen sections. The FFPE
and frozen patches will be randomly sampled from the bags from the same patient. Two sorts
of patches are input into two networks without weight-sharing. The feature vectors from
different layers play different roles in the representation disentanglement and classification.

The proposed parallel mutual optimization learning scheme is shown in Fig. 1. Initially,
a random sampling strategy is adopted for the mutual training. The FFPE and frozen patches
will be randomly sampled from the bags of the same patient. The paired images are input
into the Network α1 and α2, respectively. In each branch, the set of feature vectors (h1 and
h2) after the first fully connected layer and ReLU are input into the next two fully connected
layers respectively for multi-modal representation disentanglement and low-rank optimiza-
tion. Combining contrastive loss, low-rank loss and classification loss could optimize each
modality network jointly via the back-propagation. We introduce details of the main design
in the following parts.

Non-linear representation. We adopt three fully connections with ReLU in our scheme
to promote better non-linear projection of latent vectors for representation learning. In each
modal network, the latent vectors after average pooling are transformed by first fully connec-
tion, ReLU and second hidden layer with the same dimensional transformation, so that we
can obtain a representative vector with the non-linear projection (zi = g(hi) =W 2σ(W 1hi)),
where σ is s a ReLU non-linearity. Referred by the experiments of SimCLR [5], a non-linear
operator can remove variant information, e.g., the color or orientation of objects resulting
from various staining procedures from multiple centers. Therefore, these latent vectors can
be more suitable for representation disentanglement and the final classification head can
leverage the nonlinear transformation to maintain more useful information in h, which could
boost the performance.

NMC-loss. For this design, formally given a mini-batch of size N, we firstly view the
FFPE xa

1, ...,x
a
K and the frozen section , xb

1, ...,x
b
K images as images sampled from different

augmented views on the same patient. There are 2N −1 pairs totally, among which we can
regard the corresponding augmented sample xb

i as a positive pair xa
k ,x

b
k and other 2N − 2

pairs are negative samples. In standard contrastive loss definition presented in [5, 11], l2
normalization was used for reference and augmented images. However, the image pairs used
in self-supervised learning keep unified features and distribution, and l2 normalization can
scale latent vector into a valid range. In our task, the image pairs include two domains with
different distributions. Therefore, we adopt layer normalization, as shown in Eq. 1, to re-
centre and rescale the latent space into the same sphere, which can improve the efficiency of
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disentanglement.

ĝn =
gn −µn√
(σn)2 + ε

(1)

where n ∈ {1,2} and gn denotes the latent vector from FFPE or frozen section. µ and σ are

the mean and variance of each batch. Moreover, we denote sim(ĝ1, ĝ2) =
ĝT

1 ĝ2
||ĝ1||·||ĝ2||

as the
cosine similarity between ĝ1 and ĝ2. The NMC-loss function can be defined as:

La
k =−log

exp(sim(ĝa
k , ĝ

b
k)/τ)

∑i∈I 1i ̸=kexp(sim(ĝa
k , ĝ

b
i )/τ)

(2)

where 1i̸=k ∈ {0,1} is an indicator, which values 1 only when i ̸= k. We also define τ as
a temperature hyper-parameter. To identify all positive pairs in this batch, the NMC-loss is
further defined as (Lb

k follows the same calculation with La
k) :

Lnmc =
1

2N

K

∑
k=1

(La
k +Lb

k) (3)

Low-rank loss. Inspired by the idea of low rank of representations [14, 17], we can con-
sider that successful training of the network would result in the classifier vectors remaining
orthogonal at the end if non-linear representation gn can be in the orthant and low-rank. More
precisely, we can consider a feature embedding of each modality Xa = [xa

1|xa
2|...|xa

N ], where
each column xa

i ∈ Rd , i = 1, ....,N, a ∈ [1,2] and | represents vertical concatenation. The Xa

is obtained from a given training samples Y with minibatch size N, X = φ(Y ;θ), and X is the
N ×D deep embedding from extractor φ with parameter θ . We further assume that Xa

c ,Y
a
c

are the sub-feature matrices and input 5data respectively belonging to grade c and modality
a. To achieve better discriminative representation disentanglement in intra- and inter-patient
levels, the sub-matrices from two modalities will be concatenated from a vertical direction
such as M = [X1|X2]. In each minibatch, our low-rank loss can be defined as the following
equations:

Llr =
C

∑
c=1

max(∆, ||Mc||∗)−||M||∗

=
C

∑
c=1

max(∆, ||[φ(Y 1
c ;θ)|φ(Y 2

c ;θ)]||∗)−||[φ(Y 1;θ)|φ(Y 2;θ)]||∗

(4)

Where ||.||∗ means the matrix nuclear norm (the sum of the singular values) ∆∈R denotes
a bound on the intra-class nuclear loss that can avoid the training collapse resulting from
feature value to zero. In our experiments, we set ∆ = 1. The first term in loss function can
minimize the rank of each grade feature subspace and the second term promotes inter-class
to be linearly orthogonal.

To further clarify the optimization in backpropagation, we can calculate a simplified
subgradient of the nuclear norm. Based on the SVD decomposition and deduction from
[14], the descent direction can be defined as the following equation:

gLlr(M) =
C

∑
c=1

[Z(l)
c |Uc1V T

c1|Z
(r)
c ]−U1V T

1 (5)
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Where, Z(l)
c and Z(r)

c denote fill matrices of zeros to keep the original dimension of M.
U1 and V1 are the principal left and right singular vectors from M and Uc1 and Vc1 are chosen
by the singular value being greater than a fixed threshold.

Model optimization. Our learning scheme consists of two functions to achieve joint
optimization in two classification tasks. Each function consists of a cross-entropy (CE) loss
with a Taylor Softmax [9], and an NMC-loss and a low rank loss. The Taylor Softmax CE
can smooth labels to reduce over-fitting and it already has been proved effectiveness in many
competition solutions. This loss can be formed as Eq. 3 and the total loss function of each
modality can be expressed as Eq. 4:

Lcls( f (x),y) =
t

∑
i=1

(1− fy(x))i

i
(6)

LFFPE = Lcls1 +Lnmc +Llr

LFrozen = Lcls2 +Lnmc +Llr
(7)

where the fy(x) denotes the y-th element of f (x) and f (.) is a CNN with the classification
layer. t is the term number of the Taylor series and we set t = 3 as the same as the setting
from the original paper.

3 Experimental Setup

3.1 Datasets
We utilized the WSI of glioblastoma (GBM) and LGG from the Cancer Genome Atlas
(TCGA) dataset [1], with clinical details and Hematoxylin and Eosin (HE) stained sections
available. We only selected 499 patients (108 grade II, 94 grade III, and 297 grade IV) with
both FFPE and frozen sections available.

For data pre-processing, we designed three steps: 1) transforming a low-dimension
version of WSI into HSV color space and separating HE-stained tissue from the back-
ground using Otsu’s Binarization on the saturation channel [4]; 2) patching a number of
non-overlapping 500×500 instance-level images at 20× magnification; 3) a blob detection
procedure [38] to further remove redundant patches containing insufficient tissue. The num-
bers of finally included patches were 1,680,714 for FFPE sections and 483,886 for frozen
sections.

To evaluate the proposed scheme, the dataset was randomly divided into 319 patients
for the training set, 80 patients for the validation set and 100 patients for the testing set.
In testing set, it included 27 grade II, 25 grade III, and 48 grade IV. Moreover, to increase
sample size, we cropped sub-regions of patches into a size of 224× 224. In addition, we
applied data augmentation techniques (random rotation of 90°, 180°, 270°, random flipping
image along axis, shift hue saturation value and brightness contrast) to increase the training
sample size.

3.2 Training Details
The training environment was based on PyTorch 1.6.0 backend with acceleration by Nvidia
RTX 3090. The batch size was set to 32, corresponding to 32 pairs of FFPE and frozen im-
ages in the mutual training, while 32 of FFPE or frozen images in single training and mixed
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training. The input was 224× 224× 3. We used the loss function described in. Eq.4 for
our experiments. The number of training epochs was 10, and the optimizer was Adam with
default parameters. Cosine annealing warm restarts were adopted with an initial learning
rate of 1.6×10−4.

We trained different CNN backbones with single-modal input training (baseline) [13, 33],
mixed-modal training and our proposed mutual training scheme. Meanwhile, some compar-
isons with state of art methods (SOTAs), such as attention MIL (A-MIL) [12], TransMIL [31]
and CLAM [21], were introduced. In the original papers, the feature vector of each patch
was from the backbone with ImageNet pre-trained weights. Therefore, we further used the
trained weights from the different learning schemes to extract feature vectors at patch-level.
Moreover, we compared the performance of different metrics loss in mutual training such as
Kullback-Leibler divergence [41], marginal triplet loss [29], NT-logistic loss, NT-Xent loss
[5] and angular margin contrastive loss (AMC) [6] as well.

3.3 Testing Details

Figure 2: The pipeline of gliomas grading on FFPE section and frozen section.

The details of the inference phase are shown in Fig. 2. FFPE and frozen sections were
classified separately by Network a1 or a2 with respective classification heads. After pre-
dicting all images in a patient’s bag, the number of predicted grades was counted by the
histogram and majority voting was used to determine the final predicted tumor grade. More-
over, in the comparison study, we also followed protocols in A-MIL [12], CLAM [21] and
TransMIL [31] to train and test at patient-level feature matrices.

4 Results

4.1 Quantitative Results
For comparison, the evaluation metrics on the CNN backbone with single input training,
mixed training, our proposed scheme, SOTAs and combinations of different learning schemes
and SOTAs are shown in Table 1. We chose EfficientNet-B0 to evaluate the model perfor-
mance in these experiments. We observe that our proposed learning scheme outperforms
the single and mixed training on the given backbone. These results suggest that the perfor-
mance of the single training could be limited by the information from each single specific
modality, while the mixed training may not efficiently obtain complementary information
from the batch-size learning. After being applied to the different learning schemes on SO-
TAs, our proposed scheme demonstrates the capability of disentangling mutual information
from multi-modality and reducing intra-class variance in the latent vector space, which could
increase the SOTAs performance at the instance and patient-level.
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Table 1: Comparison with different learning schemes. Single training only trained and tested
on the same single modality. Mixed training mean combining modalities for training on one
model and separately testing in each. Mutual training followed proposed method to train and
test. The ImageNet pre-trained weights, single trained weights, mixed trained weights and
mutual trained weights were used in feature extraction and combined with A-MIL, TransMIL
and CLAM to train and test in patient-level.

FFPE Frozen

Accuracy Precision Recall Accuracy Precision Recall

Single training 0.71 0.72 0.71 0.70 0.71 0.70

Mixed training 0.70 0.72 0.71 0.68 0.67 0.68

MCL 0.76 0.77 0.76 0.74 0.73 0.74
ImageNet + A-MIL 0.72 0.72 0.72 0.70 0.68 0.70

ImageNet + TransMIL 0.71 0.72 0.71 0.74 0.73 0.74

ImageNet + CLAM 0.71 0.72 0.71 0.69 0.70 0.69

single training+A-MIL 0.74 0.75 0.74 0.74 0.73 0.74

single training+TransMIL 0.69 0.70 0.73 0.73 0.72 0.73

single training+CLAM 0.75 0.76 0.75 0.73 0.72 0.73

Mixed training+A-MIL 0.73 0.73 0.73 0.70 0.69 0.70

Mixed training+TransMIL 0.70 0.70 0.70 0.72 0.73 0.72

Mixed training+CLAM 0.75 0.75 0.75 0.71 0.69 0.71

MCL+A-MIL 0.78 0.79 0.78 0.75 0.74 0.75

MCL+TransMIL 0.77 0.77 0.77 0.74 0.75 0.74

MCL+CLAM 0.79 0.80 0.79 0.75 0.75 0.75

To further demonstrate that our proposed NMC loss and low-rank loss could fulfill a
better representation disentanglement at intra- and inter-patient levels, we compared it with
other contrastive loss functions as shown in Table. 2. We observe that the NMC loss pro-
vides superior performance, benefiting the representation disentanglement. In comparison,
KL-loss fails to consider the distance between positive and negative samples, which might
lead to worse performance than other loss functions. As for the marginal triplet, NT-logistic
loss and AMC loss, they are measured using the absolute similarity of the positive and neg-
ative samples. Although using the relative similarity may help the network optimize the bal-
ance between separating the samples of different classes in NT-Xent loss, l2 normalization
on a single modality can not match differences between modalities. Therefore, the results
of NMC-loss illustrate the advantage of layer normalization. Moreover, the low-rank loss
shows capacity of the discriminative information disentanglement at intra- and inter-patient
levels, compared with other contrastive loss. The combination of the NMC-loss and LR loss
achieves best performance. From Table.3, a temperature (τ) of 0.5 performed the best. The
models in different temperature hyper-parameter have stable accuracy and show the consis-
tent robustness in this task. In our experiments, we found that the training will collapse if
temperature is smaller than 0.05.

4.2 Visualization

To understand how our proposed scheme leverages representation disentangling in predict-
ing tumor grades, we visualized the latent vector from single training, mixed training and
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Table 2: Comparison with different contrastive loss functions
FFPE Frozen

Accuracy Precision Recall Accuracy Precision Recall
KL-loss 0.71 0.70 0.68 0.71 0.68 0.69

Marginal triplet loss 0.74 0.74 0.74 0.72 0.72 0.72
NT-Logistic loss 0.74 0.74 0.72 0.71 0.68 0.70

NT-Xent loss 0.71 0.71 0.71 0.73 0.73 0.73
AMC loss 0.75 0.76 0.75 0.70 0.70 0.70
LR loss 0.75 0.77 0.75 0.72 0.73 0.72

NMC-loss 0.75 0.75 0.75 0.72 0.71 0.72
NMC-loss + LR Loss 0.76 0.77 0.76 0.74 0.73 0.74

Figure 3: Mutual learning scheme interpretability in brain tumor grading. Each point is from
reducing the dimension of the latent vector by UMAP method.

our proposed scheme on FFPE and frozen section images, using the Uniform Manifold Ap-
proximation and Projection (UMAP) method [24]. As shown in Fig. 3, the latent vectors
are obtained from the CNN extractors. The results show that our proposed scheme could
promote multi-modality and discriminative representation disentanglement, which may help
the latent vector on the classification head preserve more helpful information from the same
tumor grade, demonstrating closer distribution in the feature space.

Table 3: Sensitivity (accuracy) of
temperature hyper-parameter

Temperature 1 0.5 0.1 0.05
FFPE 0.75 0.76 0.75 0.72
Frozen 0.70 0.74 0.74 0.72

The qualitative performance of the randomly se-
lected statistical features from our proposed scheme
is illustrated in Fig. 4. These salient maps are gener-
ated by classification activation maps (CAMs) [42].
The examples in Fig. 4 show that the trained model
by our proposed scheme can focus on the prolifera-
tion region, which helps efficiently detect tissue morphology from the WSI.

5 Conclusions
In this paper, we propose a mutual low-rank contrastive clustering learning scheme to im-
prove the performance of representation disentangling on whole slide images for tumor grad-
ing. We first develop a mutual learning scheme to extract relevant image representations by
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Figure 4: Image-level predicted heatmap of three tumor grades by mutual learning. Left to
right: Grade II, III, and IV). The FFPE and Frozen images of each grade are from the same
patients. The color bar indicates the estimated level of attention on the region.

integrating FFPE and frozen sections with complementary information. Next, We design
an NMC loss, which could promote multi-modality representation disentangling within the
same sphere. To further achieve discriminative representation disentanglement on the intra-
and inter-patient levels, we conduct a low-rank loss. We would note that grading certain
glioma are especially challenging by nature, as shown in most SOTA models, due to the
tangled features across these grades in terms of morphology and cell compositions. Our pro-
posed method has demonstrated superiority in disentangling representations compared with
single or mixed training. Combined with attention-based MIL methods, our method could
better extract robust features leading to better model performance. Moreover, compared with
some multi-modal learning architectures that require multiple modalities in both training and
testing phases, our model could perform prediction based on single modality in the testing
phase, promising to tackle the challenge of data scarcity. Empirically, these loss functions
could be applied to the grading of other tumours or multi-modal learning tasks in MRI and
CT images. Further, as these losses can plug in at the latent vector level and do not reduce the
efficiency of inference, they can be easily incorporated into other backbone networks. In the
future, we will further explore mutual self-supervised architecture so that this representation
learning can transfer into more downstream tasks which achieve by the attention based MIL.
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