ISG: I can See Your Gene Expression

Yan Yang (The Australian National University),* Liyuan Pan (The Australian National University), Liu liu (ANU (Australian National University)), Eric A Stone (The Australian National University)
The 33rd British Machine Vision Conference


This paper aims to predict gene expression from a histology slide image precisely. Such a slide image has a large resolution and sparsely distributed textures. These obstruct extracting and interpreting discriminative features from the slide image for diverse gene types prediction. Existing gene expression methods mainly use general components to filter textureless regions, extract features, and aggregate features uniformly across regions. However, they ignore gaps and interactions between different image regions and are therefore inferior in the gene expression task. Instead, we present ISG framework that harnesses interactions among discriminative features from texture-abundant regions by three new modules: 1) a Shannon Selection module, based on the Shannon information content and Solomonoff's theory, to filter out textureless image regions; 2) a feature extraction network to extract expressive low-dimensional feature representations for efficient region interactions among a high-resolution image; 3) a Dual Attention network attends to regions with desired gene expression features and aggregates them for the prediction task. Extensive experiments on standard benchmark datasets show that the proposed ISG framework outperforms state-of-the-art methods significantly.



author    = {Yan Yang and Liyuan Pan and Liu liu and Eric A Stone},
title     = {ISG: I can See Your Gene Expression},
booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher = {{BMVA} Press},
year      = {2022},
url       = {}

Copyright © 2022 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection