Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic Segmentation

Sebastian Scherer (University of Augsburg),* Robin Schön (University of Augsburg), Rainer Lienhart ("Universitat Augsburg, Germany")
The 33rd British Machine Vision Conference


Semi-supervised learning (SSL) can reduce the need for large labelled datasets by incorporating unlabelled data into the training. This is particularly interesting for semantic segmentation, where labelling data is very costly and time-consuming. Current SSL approaches use an initially supervised trained model to generate predictions for unlabelled images, called pseudo-labels, which are subsequently used for training a new model from scratch. Since the predictions usually do not come from an error-free neural network, they are naturally full of errors. However, training with partially incorrect labels often reduce the final model performance. Thus, it is crucial to manage errors/noise of pseudo-labels wisely. In this work, we use three mechanisms to control pseudo-label noise and errors: (1) We construct a solid base framework by mixing images with cow-patterns on unlabelled images to reduce the negative impact of wrong pseudo-labels. Nevertheless, wrong pseudo-labels still have a negative impact on the performance. Therefore, (2) we propose a simple and effective loss weighting scheme for pseudo-labels defined by the feedback of the model trained on these pseudo-labels. This allows us to soft-weight the pseudo-label training examples based on their determined confidence score during training. (3) We also study the common practice to ignore pseudo-labels with low confidence and empirically analyse the influence and effect of pseudo-labels with different confidence ranges on SSL and the contribution of pseudo-label filtering to the achievable performance gains. We show that our method performs superior to state of-the-art alternatives on various datasets. Furthermore, we show that our findings also transfer to other tasks such as human pose estimation. Our code is available at



author    = {Sebastian Scherer and Robin Schön and Rainer Lienhart},
title     = {Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic Segmentation},
booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher = {{BMVA} Press},
year      = {2022},
url       = {}

Copyright © 2022 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection