Wide-Range MRI Artifact Removal with Transformers

Lennart Alexander Van der Goten (KTH Royal Institute of Technology),* Kevin Smith (KTH Royal Institute of Technology)
The 33rd British Machine Vision Conference


Artifacts on magnetic resonance scans are a serious challenge for both radiologists and computer-aided diagnosis systems. Most commonly, artifacts are caused by motion of the patients, but can also arise from device-specific abnormalities such as noise patterns. Irrespective of the source, artifacts can not only render a scan useless, but can potentially induce misdiagnoses if left unnoticed. For instance, an artifact may masquerade as a tumor or other abnormality. Retrospective artifact correction (RAC) is concerned with removing artifacts after the scan has already been taken. In this work, we propose a method capable of retrospectively removing eight common artifacts found in native-resolution MR imagery. Knowledge of the presence or location of a specific artifact is not assumed and the system is, by design, capable of undoing interactions of multiple artifacts. Our method is realized through the design of a novel volumetric transformer-based neural network that generalizes a \emph{window-centered} approach popularized by the Swin transformer. Unlike Swin, our method is (i) natively volumetric, (ii) geared towards \emph{dense prediction} tasks instead of classification, and (iii), uses a novel and more global mechanism to enable information exchange between windows. Our experiments show that our reconstructions are considerably better than those attained by ResNet, V-Net, MobileNet-v2, DenseNet, CycleGAN and BicycleGAN. Moreover, we show that the reconstructed images from our model improves the accuracy of FSL BET, a standard skull-stripping method typically applied in diagnostic workflows.



author    = {Lennart Alexander Van der Goten and Kevin Smith},
title     = {Wide-Range MRI Artifact Removal with Transformers},
booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher = {{BMVA} Press},
year      = {2022},
url       = {https://bmvc2022.mpi-inf.mpg.de/0846.pdf}

Copyright © 2022 The British Machine Vision Association and Society for Pattern Recognition
The British Machine Vision Conference is organised by The British Machine Vision Association and Society for Pattern Recognition. The Association is a Company limited by guarantee, No.2543446, and a non-profit-making body, registered in England and Wales as Charity No.1002307 (Registered Office: Dept. of Computer Science, Durham University, South Road, Durham, DH1 3LE, UK).

Imprint | Data Protection