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1 Additional Results on the Sensitivity to Handwriting
In this section, we report the results on the sensitivity of the HWD and the FID to the hand-
writing style obtained on the Norhand [5] and BanglaWriting [6] multi-author datasets. We
consider half of the samples for each featured writer as references and the other half as if they
were the output of a perfect Styled HTG model. Then, we compare the distributions of the
HWD and the FID values computed on text images of multiple matching and non-matching
authors pairs. The obtained distributions are reported in Figure 1.
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Figure 1: Distributions of different scores used to evaluate HTG models when applied on
same-author (green) or different-author (red) subsets. The overlap area is in dark red.
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2 Further Comparison Between HTG Approaches
In Table 1, we report some qualitative examples of images generated by two HTG approaches
being scored with both FID and HWD. These show that HWD better separates cases in which
HTG models perform one better than the other, compared to the FID, which has similar
values both for good cases and failure cases.

Reference VATr HWT

HWD FID HWD FID

0.84 128.4 1.09 128.7

0.70 111.7 0.93 111.9

0.60 86.6 0.92 86.7

Table 1: Qualitatives, FID, and HWD of HTG models.

3 Alternative Metric Distances for HWD
In Table 2 we report the results obtained on the IAM dataset when using Mahalanobis and the
Hamming distances in the final step of the HDW computation. It emerges that the Euclidean
distance works best for HWD, leading to the smaller Overlap and EER.

Distance Overlap EER

Mahalanobis 7.4 3.6
Hamming 4.3 2.1
Euclidean 0.7 0.3

Table 2: Ablation results when changing the distance metric at the final step of HWD.

4 Additional Results on the Sensitivity to the Number of
Samples

In this section, we report further results on the numerical stability of the proposed HWD,
compared to the FID and two baseline scores, namely the FID w/ Euclidean (obtained by
computing the Euclidean distance on the Inception-v3 features) and HWD w/ Fréchet (ob-
tained by computing the Fréchet distance on the VGG16). In particular, we use the images
from the considered single-author datasets (ICFHR14 [7], Saint Gall [3], Leopardi [1], Ro-
drigo [8], Washington [4], and LAM [2]). The results are expressed as mean and range
between the 25th and 75th percentiles of the values obtained over multiple runs by varying
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the number of samples. These are reported in Figure 2. For the plots in each row, we con-
sider the whole indicated dataset as the set of reference images and compute the score when
comparing it with a variable number of samples from the other datasets and from the dataset
itself for reference.
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Leopardi Saint Gall Washington
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Figure 2: Comparison between FID and HWD with varying number of samples on different
single-author datasets. The lines denote the mean, and the transparent bands represent the
range between the 25th and 75th percentiles, obtained with 10 calculation runs.

5 Computation Time Comparison
We consider the computation time, consisting of image representation and distance com-
putation, of FID and HDW on the same hardware and data. Computing the FID score on
25823/25823 real/fake images from the LAM dataset takes 426.12s + 9.03s (image repre-
sentation + distance computation), while the computation time of HWD is 135.50s + 0.01s.
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