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Limitations of existing methods: An overview of the proposed Hyperspectral Locality-aware Image TransformEr (HyLITE). i). Our model consistently outperforms all techniques by a wide margin across all datasets and
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Figure 2. An overview of the proposed Hyperspectral Locality-aware Image Transformer Incorporating locality not only improves accuracy, but also improved sample efficiency of
In summary, our work makes three main contributions: Hyperspectral imaging, which is promising for low-shot learning applications.
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Figure 3. Comparing the sample efficiency of HyLITE and SpectralFormer [1] on Indian Pines.
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