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Motivation

Limitations of existing methods:

Hyperspectral Imaging (HSI) provides fine-grained information that is not typically available

in conventional RGB images, which has led to breakthroughs in various industries.

Classic machine learning methods and deep learning models have shown limitations in

modeling long-range dependencies across spatial-spectral dimensions of HSI.

Recent research based on vision transformers for HSI focuses solely on spectral information

and lacks attention to the spatial locality.
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Figure 1. An example of Indian Pines dataset. A Hyperspectral image cube, with the spectral signals of two pixels

from separate categories (‘notill’ and ‘mintill’).

Main contributions

In summary, our work makes three main contributions:

1. We propose Hyperspectral Locality-aware Image TransformEr (HyLITE), a novel

architecture that can model the local-spectral relationships in Hyperspectral data.

2. We equip HyLITE with a novel local-global regularization objective, to balance global and

local spectral information.

3. We conduct experiments on three well-established benchmarks, and show that HyLITE

significantly improves over the competitive SpectralFormer [1] baseline, across all

benchmarks and metrics.
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Hyperspectral Locality-aware Image TransformEr

An overview of the proposed Hyperspectral Locality-aware Image TransformEr (HyLITE). i).

Preprocessing: The input image is patchified, linearly projected, and appended with a classifier

token and a positional embedding. ii). Representation: The input is processed by identical

spectral and local multi-head attention (MHA) blocks. iii). Classification: At the end, the

representation of the classifier token is mapped to a distinct category, such as {grass, road}. iv).
Regularization: To further promote locality, we apply our novel regularization on top of the

learned token representations.
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Figure 2. An overview of the proposed Hyperspectral Locality-aware Image TransformEr

The Objective

Our model aims to optimize the following loss function, in which CE(·) is the standard cross-

entropy loss, Reg(·) is our novel local-global regularization objective, and λ attenuates the reg-

ularization strength.

O = CE(y, y′) + λ · Reg(XB)

Regularization

To minimize the regularization loss, the global output token X0
B should be close to the center

of the spectral tokens. Hence, the gradients will nudge the representations of the global and

spectral tokens closer together, causing them to converge rather than diverge, and aggregating

information from each other, thus incorporating globality in the learning process.
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Experimental Results

Our model consistently outperforms all techniques by a wide margin across all datasets and

evaluation metrics. For example, in comparison to SpectralFormer, we improve the overall

accuracy by 10.83% on Indian Pines, by 3.41% on Houston2013, and by 6.64% on Pavia

University.

IndianPines Houston2013 PaviaUniversity

OA AA Kappa OA AA Kappa OA AA Kappa

kNN 59.17 63.90 0.54 77.30 78.28 0.75 70.53 79.68 0.62
RF 69.80 76.78 0.65 77.48 80.35 0.75 69.67 80.18 0.62
SV M 72.36 83.16 0.68 76.91 78.99 0.79 70.82 84.44 0.64
1 − DCNN 70.43 79.60 0.66 80.04 82.74 0.78 75.50 86.26 0.69
2 − DCNN 75.89 86.64 0.72 83.72 84.35 0.82 86.05 88.99 0.81
RNN 70.66 76.37 0.66 82.23 85.04 0.81 77.13 84.29 0.71
miniGCN 75.11 78.03 0.71 81.71 83.09 0.80 79.79 85.07 0.73
V iT 71.86 78.97 0.68 80.41 82.50 0.78 76.99 80.22 0.70
SpectralFormer 78.97 85.39 0.76 85.08 86.39 0.83 84.64 86.75 0.79
HyLITE(Ours) 89.80 94.69 0.88 88.49 89.74 0.87 91.28 92.25 0.88
∆ 10.83 9.30 0.12 3.41 3.35 0.03 6.64 5.50 0.08
MAEST [2] 82.12 87.63 0.79 83.61 84.89 0.82 87.20 89.91 0.83

Table 1. Comparison against the State-of-the-Art

Incorporating locality not only improves accuracy, but also improved sample efficiency of

Hyperspectral imaging, which is promising for low-shot learning applications.
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Figure 3. Comparing the sample efficiency of HyLITE and SpectralFormer [1] on Indian Pines.
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