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1 Experimental Setup

Implementation Details. The proposed Hyperspectral Locality-aware Image TransformEr
is implemented with PyTorch. We adopt the backbone code from Hong et al. [7] and im-
plement additional local attention modules and the regularization objective function. The
experiments were run on NVIDIA RTX A6000 GPU. Our work strictly follows the experi-
mental setup of Hong et al. [7], with identical train-test splits, hyper-parameters, datasets
and metrics. The hyper-parameters are listed in Table 4. We provide the details below. CAF
Layer: To preserve the information across all layers, following [7], we apply Cross-Adaptive
Fusion (CAF) between the output of the (b−2)-th block and the output of the (b)-th block.
The representations of these two blocks are fused with a 1×2 convolution layer. We refer to
Hong et al. [7] for more details.

Datasets. We evaluate our model on three standard, public benchmarks. i) Indian Pines [3]:
The dataset is collected by AVIRIS sensor over the Indian Pines test site in North-Western
Indiana, USA. The dataset consists of 224 spectral bands, sampled between 400−2500 nm,
with a spatial resolution of 145× 145 pixels. The dataset includes 16 distinct categories,
695 training and 9671 testing images. Typical categories include {corn,woods,wheat}. ii)
Houston2013 [1]: The dataset is collected by ITRES CASI-1500 sensor over the University
of Houston campus. It contains 144 spectral bands sampled between 380− 1050nm, with
a spatial resolution of 349× 1905 pixels. The dataset includes 15 distinct categories, 2832
training and 12197 testing images. Typical categories include {water,soil, tree}. iii) Pavia
University [3]: The dataset is collected by ROSIS sensor over Pavia University, Italy. It
contains 103 spectral bands sampled between 430 − 860nm, with a spatial resolution of
610×340 pixels. The dataset includes 9 distinct categories, 3921 training and 40002 testing
images. Typical categories include {asphalt,meadows,bricks}.

Baselines. We compare our model to several state-of-the-art networks. The K-nearest neigh-
bor model makes predictions by calculating the pairwise Euclidean distance of spectral bands
between training pixels [10]. The random forest classifier incorporates bagging of training
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Class No. Class Name Training Testing
1 Healthy Grass 198 1053
2 Stressed Grass 190 1064
3 Synthetic Grass 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot1 192 1041
13 Parking Lot2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12197
Table 1: Land-cover classes of Houston2013 dataset, together
with the training and testing samples for each class.

Class No. Class Name Training Testing
1 Asphalt 548 6304
2 Meadows 540 18146
3 Gravel 392 1815
4 Trees 524 2912
5 Metal Sheets 265 1113
6 Bare Soil 532 4572
7 Bitumen 375 981
8 Bricks 514 3364
9 Shadows 231 795

Total 3921 40002
Table 2: Land-cover classes of Pavia University dataset, together
with the training and testing samples for each class.

pixels and random subspace feature selection of spectral bands [4]. The support vector
machine firstly projects spectral bands into high-dimensional feature space and maximizes
the geometrical margin between categories [11]. The 1-D CNN model performs 1-D con-
volution along the spectral dimension [8], while the 2-D CNN model firstly patchifies the
input image and then performs 2-D convolution along the spatial dimension [2]. The RNN
model processes spectral bands as time sequences with a stack of recurrent layers and gated
recurrent units [5]. The miniGCN network firstly generates an adjacency metric with a KNN-
based graph and then processes the generated graph via graph convolution layers [6]. The
ViT-based network uses ViT encoder blocks to process spectral bands as a sequence of sig-
nals [7]. Different from pure ViT, the SpectralFormer patchifies the input image and groups
neighboring spectral bands to a sequence of input vectors, and then processes the input via a
stack of ViT encoder blocks [7]. Finally, MAEST pre-trains a feature extractor via a masked
encoder-decoder reconstructing network and then fine-tunes the pre-trained encoder with la-
beled data [9]. Since the proposed system model is built upon SpectralFormer, we did not
re-run all the baseline models except for the SpectralFormer and MAEST. Hence, we refer
to Hong et al. [7] for more experimental details of those comparison baselines.

2 Hyper-Parameter Tuning of λ

According to our objective equation of the proposed HyLITE, to find a suitable λ that bal-
ances well between cross-entropy loss and local-spectral regularization loss, we evaluate
HyLITE with 6 different λ values. The results are listed in Table 5, which shows that simply
selecting λ = 1 works the best across most accuracy metrics.

3 Addition Category-level comparisons
The results of category-level comparison with SpectralFormer on Houston2013 and Pavia
University datasets are presented in Figure 1 and Figure 2, respectively.
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Class No. Class Name Training Testing
1 Corn Notill 50 1384
2 Corn Mintill 50 784
3 Corn 50 184
4 Grass Pasture 50 447
5 Grass Trees 50 697
6 Hay Windrowed 50 439
7 Soybean Notill 50 918
8 Soybean Mintill 50 2418
9 Soybean Clean 50 564
10 Wheat 50 162
11 Woods 50 1244
12 Buildings Grass Trees Drives 50 330
13 Stone Steel Towers 50 45
14 Alfalfa 15 39
15 Grass Pasture Mowed 15 11
16 Oats 15 5

Total 695 9671
Table 3: Land-cover classes of Indian Pines dataset, together with the training and testing samples for each class.

Hyperparameter Value

Number of transformer blocks 5
Number of attention heads 4
Embedding dimension 64
Dimension head 16
MLP dimension 8
Optimizer Adam (weight decay=5e-3)
Initial learning rate 5e-4
Learning rate scheduler StepLR (gamma=0.9)
Batch size 32
Total training epochs 300

Table 4: Hyperparameters of the architecture and training. Notably, the dimension head
denotes the scaling factor of the Query-Key dot product. It usually has the same value as the
embedding dimension, but we follow the setting of SpectralFormer using a varied value.

Indian Pines Houston2013 Pavia University

λ OA AA Kappa OA AA Kappa OA AA Kappa

0.1 86.96 91.68 0.85 84.27 86.06 0.83 83.25 89.63 0.79
0.5 88.10 92.40 0.86 85.48 87.29 0.84 90.19 92.37 0.87
1 89.80 94.69 0.88 88.49 89.74 0.86 91.28 92.25 0.88
2 87.24 91.74 0.85 88.09 88.94 0.87 91.79 89.55 0.89
5 87.01 93.28 0.85 85.18 86.67 0.84 81.70 90.65 0.77
10 84.33 89.82 0.82 87.82 88.73 0.87 87.54 92.25 0.84

Table 5: Hyperparameter tuning the magnitude of the regularization loss (λ ). Simply select-
ing λ = 1 works best across most accuracy metrics.
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Category-Level Comparison (Houston2013)
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Figure 1: Category-level comparison to the SpectralFormer on Houston2013. The contribu-
tion of HyLITE is generic, with fine-grained categories of ‘Highway’, ‘Parking Lot2’, and
‘Synthetic Grass’ receiving the highest benefits.
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Figure 2: Category-level comparison to the SpectralFormer on Pavia University. The con-
tribution of HyLITE is generic, with fine-grained categories of ‘Bitumen’, ‘Meadows’, and
‘Bare Soil’ receiving the highest benefits.
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