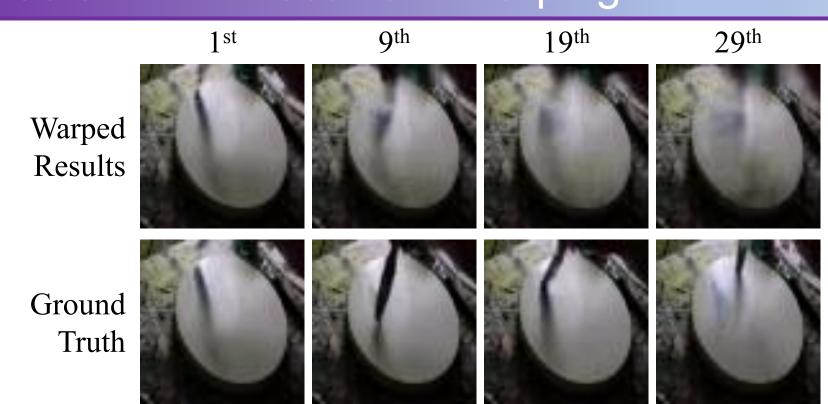


Motion and Context-Aware Audio-Visual Conditioned Video Prediction


Yating Xu, Conghui Hu, Gim Hee Lee National University of Singapore

1. Introduction

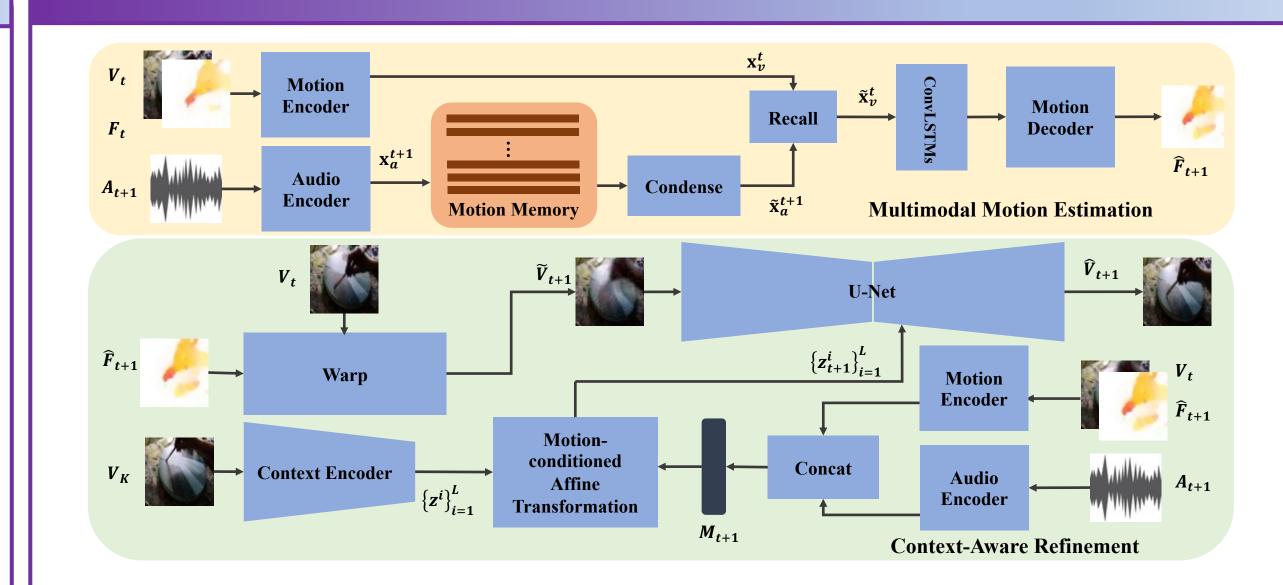
- Task: Given a full audio clip and a short sequence of the past visual frames, the objective is to predict the missing future visual frames that are as close to the ground truth frames as possible
- Problem: Direct inference of per-pixel intensity is very challenging due to the highdimensional image space.
- **Solution:** We decouple motion and appearance separately. We propose:
- > multimodal motion estimation to predict future optical flow.
- > context-aware refinement to refine the appearance of future images.

3. Problem with Recurrent Warping

The warped images become increasingly blurry and consequently lead to the loss of appearance context.

4. Optimization

Stage 1: optimize MME only.


$$\mathcal{L}_{ ext{MME}} = \mathcal{L}_{ ext{flow}} + \lambda_{ ext{smooth}} \mathcal{L}_{ ext{smooth}}$$

$$\mathcal{L}_{ ext{MME}} = \mathcal{L}_{ ext{flow}} + \lambda_{ ext{smooth}} \mathcal{L}_{ ext{smooth}}$$
 $\mathcal{L}_{ ext{flow}} = \sum_{t=K+1}^{T} \left\| F_t - \hat{F}_t
ight\|_2^2 \qquad \mathcal{L}_{ ext{smooth}} = \sum_{t=K+1}^{T} \left\|
abla \hat{F}_t
ight\|_1 e^{-\|
abla V_t\|_1}$

Stage 2: optimize CAR only.

$$\mathcal{L}_v = \sum_{t=K+1}^T \left\| V_t - \hat{V}_t
ight\|_2^2$$

2. Overall Framework

- Multimodal Motion Estimation (MME):
- > An external motion memory MM stores the audio features as the long-term information:

$$\mathbf{MM} = \{\mathbf{x}_{a}^{n}\}_{n=1}^{t+1} \in \mathbb{R}^{(t+1) \times c}$$

> Condense:

$$\tilde{\mathbf{x}}_a^{t+1} = \mathbf{x}_a^{t+1} + \text{Condense}(\mathbf{M}\mathbf{M})$$

Condense(MM) = Atten (MM, MM, MM)
$$[-1]$$

$$Atten(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = Softmax\left(\mathbf{Q}\mathbf{K}^{\top}\right)\mathbf{V}$$

> Recall:

$$\operatorname{Recall}(\mathbf{x}_{v}^{t}, \tilde{\mathbf{x}}_{a}^{t+1}) = \operatorname{Atten}(\mathbf{x}_{v}^{t}, \tilde{\mathbf{x}}_{a}^{t+1}, \tilde{\mathbf{x}}_{a}^{t+1}), \quad \tilde{\mathbf{x}}_{v}^{t} = \mathbf{x}_{v}^{t} + \operatorname{Recall}(\mathbf{x}_{v}^{t}, \tilde{\mathbf{x}}_{a}^{t+1})$$

 \triangleright Recurrent Prediction of future optical flow \hat{F}_{t+1} :

$$\{h_{t+1}, o_{t+1}\} = \text{ConvLSTM}\left(\tilde{\mathbf{x}}_{v}^{t}, h_{t}\right), \quad \hat{F}_{t+1} = D_{m}(h_{t+1})$$

- Context-aware Refinement (CAR):
- \triangleright Context encoder extracts global appearance context $Z = \{z^i\}_{i=1}^L$ from the last given visual frame V_K .
- > Motion-conditioned affine transformation to adjust global appearance context:
- ✓ Motion feature:

$$M_{t+1} = E_m\left(V_t, \hat{F}_{t+1}\right) || E_a\left(A_t\right)$$

✓ Transformation parameter:

$$\gamma_{t+1}^{i} = \text{MLP}_{1}^{i}\left(M_{t+1}\right), \quad \beta_{t+1}^{i} = \text{MLP}_{2}^{i}\left(M_{t+1}\right)$$

 \checkmark Channel-wise scaling and shifting is performed on z^i to obtain the adapted context z_{t+1}^i :

$$\mathbf{z}_{t+1}^i = \mathbf{\gamma}_{t+1}^i \cdot \mathbf{z}^i + \mathbf{\beta}_{t+1}^i$$

5. Experiments on Synthetic Dataset

Method	Type	SSIM ↑				PSNR ↑			
		Fr 6	Fr 15	Fr 25	Mean	Fr 6	Fr 15	Fr 25	Mean
Denton and Fergus []	V	0.9265	0.8300	0.7999	_	18.59	14.65	13.98	·
MSPred [V	0.9400	0.8903	0.8060	0.8846	21.57	19.02	17.04	19.08
Vougioukas et al. [12]	M	0.8600	0.8571	0.8573	_	15.17	14.99	15.01	_
Sound2Sight [■]	M	0.9505	0.8780	0.8749	0.8910	22.22	18.16	17.84	18.70
Our Method	M	0.9608	0.9158	0.8990	0.9195	23.61	19.88	18.99	20.23

6. Experiments on Real-world Datasets

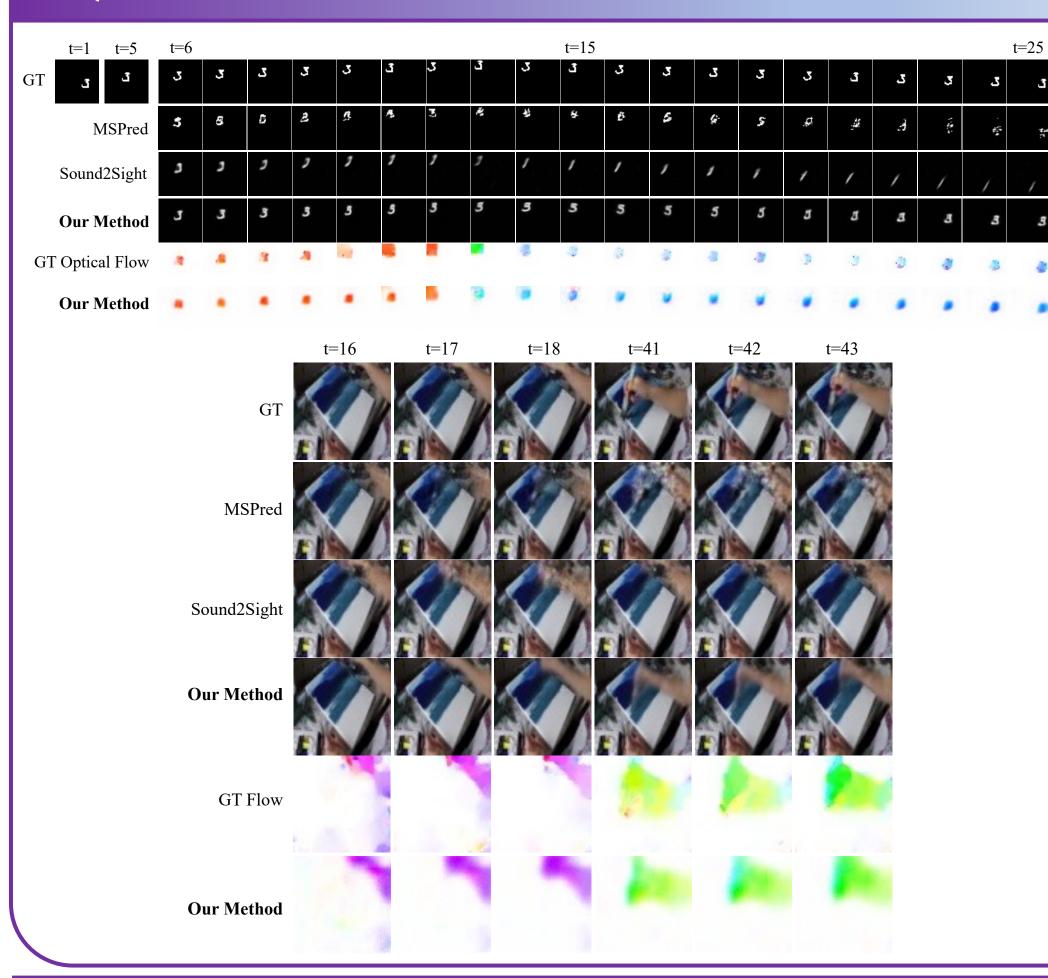

Method	Туре	SSIM ↑				PSNR ↑			
		Fr 16	Fr 30	Fr 45	Mean	Fr 16	Fr 30	Fr 45	Mean
Denton and Fergus [L]	V	0.9779	0.6654	0.4193	_	32.52	16.05	11.84	_
MSPred [V	0.9648	0.8991	0.8617	0.8965	33.42	26.42	24.25	26.65
Vougioukas et al. [***]	M	0.9281	0.9126	0.9027	_	26.97	25.58	24.78	_
Sound2Sight [□]	M	0.9716	0.9261	0.9074	0.9264	31.91	26.73	25.17	26.95
Our Method	M	0.9848	0.9284	0.9104	0.9313	35.12	27.19	25.53	27.70

Table 2: Comparison on YouTube Painting with 15 seen frames.

Method	Туре	SSIM ↑				PSNR ↑			
		Fr 16	Fr 30	Fr 45	Mean	Fr 16	Fr 30	Fr 45	Mean
Denton and Fergus []	V	0.9706	0.6606	0.5097	_	30.01	16.57	13.49	_
MSPred [₩]	V	0.9799	0.9382	0.9214	0.9389	33.55	27.30	25.91	27.60
Vougioukas et al. [12]	M	0.8986	0.8905	0.8866	_	23.62	23.14	22.91	_
Sound2Sight [□]	M	0.9875	0.9524	0.9434	0.9544	34.23	27.73	26.71	28.13
Our Method	M	0.9896	0.9533	0.9437	0.9558	35.00	27.76	26.68	28.22

Table 3: Comparison on AudioSet-Drums with 15 seen frames.

. Qualitative Results

8. Ablation Study

Method	YouTube	MNIST	AudioSet
V	11.25	_	_
V + Recall	10.43	6.40	4.63
MME	9.85	4.82	3.97

Table 4: Analysis of audio in MME. AEPE results are presented in 10^{-2} scale.

0.9848 **0.9284 0.9104 0.9313** MME+CAR Table 5: Analysis of CAR on YouTube

Painting.