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Introduction
Joint Low-light Enhancement (LLE) and Super Resolution (SR) Problems in Joint LLE & SR
* Non-uniform brightness when inputting images of varying
brightness.
>

* Loss of details.

Low-Light & Low- Norm .. * Significant performance degradation on unseen datasets, i.e.,

. - ormal-L.1 121N~
Resolution Image Jscﬁnlglgtlv‘v%f( Resolution Imageg cross-dataset problem.

Contributions

* A novel joint LLE & SR solution which can address the above-mentioned problems.

* Three novel modules are proposed or introduced, including Relative Underexposure Level Estimation Module (RUL-EM), Multi-Scale
Sampling (MSS) and Joint LLE & SR Network (JLSN).

 State-of-the-art performance on joint LLE & SR task in both within-dataset and cross-dataset settings.
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Relative Underexposure Level Estimation
Module (RUL-EM)

* Designing RUL-EM as a classification module ¢ Randomly sampling multiple patches * Our proposed method is in the form of
based on ResNet-50 with Squeeze-and- with different sizes and different  add-on (plug-and-play), where various

Excitation module. top-left positions. generators and discriminators can be
* Using the ground truth relative underexposure ¢ Resizing all the patches in into the used.

levels provided by the RELLISUR dataset as given size. * Incorporating the Channel Attention (CA)

labels. * Can help for detail restoration and  structure into the generator, allowing
* Pre-training before subsequent modules. cross-dataset generalization. the JLSN to adjust the influence of the
* Can help for uniform brightness and artifact estimated relative underexposure levels

avoidance. adaptively.

Experimental Results
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(a) Confusion Matrix of RUL-EM; (b) Ablation Study Results
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(b) Comparisons of different strategies on detail recovery and artifact avoidance



