
NG ET AL.: UNSUPERVISED HASHING WITH SDC 1

Supplementary Material

Kam Woh Ng1,2

kamwoh.ng@surrey.ac.uk

Xiatian Zhu1,3

xiatian.zhu@surrey.ac.uk

Jiun Tian Hoe4

jiuntian001@e.ntu.edu.sg

Chee Seng Chan5

cs.chan@um.edu.my

Tianyu Zhang6

macwish@hotmail.com

Yi-Zhe Song1,2

y.song@surrey.ac.uk

Tao Xiang1,2

t.xiang@surrey.ac.uk

1 CVSSP, University of Surrey
2 iFlyTek-Surrey Joint Research Centre
on Artificial Intelligence,
University of Surrey

3 Surrey Institute for People-Centred
Artificial Intelligence,
University of Surrey

4 Nanyang Technological University
5 CISiP, Universiti Malaya
6 GAC R&D Center

A Training setup
Environment. Our machine is with 16 core Intel i7-5960X CPU, 64GB RAM, and 4 Nvidia
Titan XP GPU and 1 GTX 3070 GPU. Each experiment is run by using only 1 GPU. We are
using PyTorch [14] for all of our experiments.
Code Implementations. For LsH [6, 9], SH [21], ITQ [7], SSDH [23], TBH [19] Greedy-
Hash [20], CIBHash [17] and Bihalf [12] methods, we referred from open-source repository
(some are from authors) at 1, 2, 3, 4, 5, 6, 7, and 8 respectively. We implemented all the
methods with PyTorch [14]. We follow authors’ original setting for the hyperparameters of
the methods (either from the paper or the released codes).
Hyperparameters for Category Datasets. For all datasets, we train for 100 epochs on all
methods using Adam Optimizer [10] with initial learning rate of 0.0001, weight decay of
0.0005, β1 = 0.9 and β2 = 0.999. We lowered the learning rate to 0.00001 after 80 epochs
of training. We train all methods with batch size of 64 on a single GPU. For our SDP, the
quantization error term λquan = 1.

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1https://github.com/TreezzZ/LSH_PyTorch
2https://github.com/TreezzZ/SH_PyTorch
3https://github.com/TreezzZ/ITQ_PyTorch
4https://github.com/yangerkun/IJCAI2018_SSDH
5https://github.com/ymcidence/TBH
6https://github.com/ssppp/GreedyHash
7https://github.com/qiuzx2/CIBHash
8https://github.com/liyunqianggyn/Deep-Unsupervised-Image-Hashing

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Citation
Citation
{Gionis, Indyk, Motwani, etprotect unhbox voidb@x protect penalty @M {}al.} 1999

Citation
Citation
{Indyk and Motwani} 1998

Citation
Citation
{Weiss, Torralba, and Fergus} 2009

Citation
Citation
{Gong, Lazebnik, Gordo, and Perronnin} 2012

Citation
Citation
{Yang, Deng, Liu, Liu, and Tao} 2018

Citation
Citation
{Shen, Qin, Chen, Yu, Liu, Zhu, Shen, and Shao} 2020

Citation
Citation
{Su, Zhang, Han, and Tian} 2018

Citation
Citation
{Qiu, Su, Ou, Yu, and Chen} 2021

Citation
Citation
{Li and van Gemert} 2021

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Citation
Citation
{Kingma and Ba} 2015

https://github.com/TreezzZ/LSH_PyTorch
https://github.com/TreezzZ/SH_PyTorch
https://github.com/TreezzZ/ITQ_PyTorch
https://github.com/yangerkun/IJCAI2018_SSDH
https://github.com/ymcidence/TBH
https://github.com/ssppp/GreedyHash
https://github.com/qiuzx2/CIBHash
https://github.com/liyunqianggyn/Deep-Unsupervised-Image-Hashing

2 NG ET AL.: UNSUPERVISED HASHING WITH SDC

Hyperparameters for Instance Datasets. For GLDv2, we train for 20 epochs on selected
methods (i.e., ITQ [7], GreedyHash [20] and Bihalf [12]) using Adam Optimizer [10] with
initial learning rate of 0.0001, weight decay of 0.0005, β1 = 0.9 and β2 = 0.999. We lowered
the learning rate to 0.00001 after 10 epochs of training. We train all methods with batch size
of 256 on a single GPU. We notice that using the default scale of quantization loss term is
not efficient for instance level datasets, we suspect that because instance level features are
very sensitive to the similarity, thus high quantization loss term would easily lead to trivial
solution (i.e., more severe similarity collapsing). Hence, we use a much lower quantization
term, i.e., 0.01 for GreedyHash, 0.1 for Bihalf, and 0.01 for our SDP.
Hash function h. Following the recent unsupervised hashing works [17, 19], we employ
a non-linear hash function with the architecture [nn.Linear(d,4096), nn.GELU(),
nn.Linear(4096,k), nn.BatchNorm1d(k)] (with default PyTorch’s weight initial-
ization) for category-level datasets. For instance-level datasets, we follow the recent work
[8] and employ a linear hash function [nn.Linear(d,k), nn.BatchNorm1d(k)].

A.1 Datasets
By following the protocol setup by previous works [5, 12, 17, 19, 20], we have chosen 4
category-level datasets, i.e., i) CIFAR-10, ii) NUS-WIDE, iii) MS-COCO and iv) Ima-
geNet100. For instance level, we follow the previous work [8] and choose GLDv2, ROxf
and RParis for evaluation. Please note that we follow the dataset separation settings from
previous works for all datasets.
CIFAR-10 [11]. We combine the training and testing images which have a total of 60K
images. We then randomly pick 100 images from each class as queries (1K in total), and the
remaining 59K as database images. Finally, 5K images are sampled from the database as
training images.
ImageNet100 [4]. We are using a subset of ImageNet [4] as used by [2] and followed by
many supervised deep hashing works. It consists of 128K images from 100 classes. All
validation images from the 100 classes are used as queries (1K in total), and the remaining
128K as database images. Finally, 13K images are sampled from the database as training
images.
NUS-WIDE [3]. It consists of 81 concepts with 269K multi-labeled images. 21 of the most
frequent concepts are selected which contains 195K images. 100 images are selected ran-
domly per concept as queries (2.1K in total) while the remaining 193K as database images.
Finally, 500 images per concept are randomly sampled from the database as training images
(10.5K in total).
MS-COCO [13]. We are using a public released dataset from [2]9 where images with no
category information have been removed. Both training and validation images are then com-
bined which have a total of 122K images. 5K images are selected randomly as queries while
the remaining 117K as database images. Finally, 10K images are randomly sampled from
the database as training images.
Google Landmark Datasets V2 (GLDv2) [22]. To understand the effectiveness of unsu-
pervised hashing methods in large-scale instance-level retrieval task (i.e., large number of
classes), we choose GLDv2 for large-scale experiments. Specifically, we choose a cleaned
version of GLDv2, namely, GLDv2-train-clean as training set. It has 1.2M training images

9https://github.com/thuml/HashNet/tree/master/pytorch/data/coco

Citation
Citation
{Gong, Lazebnik, Gordo, and Perronnin} 2012

Citation
Citation
{Su, Zhang, Han, and Tian} 2018

Citation
Citation
{Li and van Gemert} 2021

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Qiu, Su, Ou, Yu, and Chen} 2021

Citation
Citation
{Shen, Qin, Chen, Yu, Liu, Zhu, Shen, and Shao} 2020

Citation
Citation
{Hoe, Ng, Zhang, Chan, Song, and Xiang} 2021

Citation
Citation
{Fan, Ng, Ju, Zhang, and Chan} 2020

Citation
Citation
{Li and van Gemert} 2021

Citation
Citation
{Qiu, Su, Ou, Yu, and Chen} 2021

Citation
Citation
{Shen, Qin, Chen, Yu, Liu, Zhu, Shen, and Shao} 2020

Citation
Citation
{Su, Zhang, Han, and Tian} 2018

Citation
Citation
{Hoe, Ng, Zhang, Chan, Song, and Xiang} 2021

Citation
Citation
{Krizhevsky and Hinton} 2009

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Cao, Long, Wang, and Yu} 2017

Citation
Citation
{Chua, Tang, Hong, Li, Luo, and Zheng} 2009

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Cao, Long, Wang, and Yu} 2017

Citation
Citation
{Weyand, Araujo, Cao, and Sim} 2020

https://github.com/thuml/HashNet/tree/master/pytorch/data/coco

NG ET AL.: UNSUPERVISED HASHING WITH SDC 3

with 81K classes, 1129 queries and 762K database images. Due to the expensive cost of
training from scratch, we use their released pre-trained model10 (R50-DELG-GLDv2-clean
[1]) to compute the global features (average-pooled feature map) for the training, queries and
database images with all the images scaled to 512 × 512. The features are 2048-dimension
vectors. We then train the hash function with the computed features (i.e., GLDv2-trained),
then use it to compute hash codes for queries and database images for evaluations.
ROxf and RParis [18] are revisited annotated datasets of Oxford [15] and Paris [16]. Both
ROxf/RPar contain 70 images as query and 4993/6322 database images. Since there are
no training set, we are also using the pre-trained R50-DELG-GLDv2-clean to compute the
global features, but follow DELG[1] settings with 3 scales { 1√

2
,1,

√
2} to produce multi-

scale image representations, and the 3 features are first l2 normalized, average-pooled to
obtain a single feature vector, and l2 normalized again. Images are scaled from 1024 with 3
scales and the aspect ratio was remained. We then use the GLDv2-trained hash function to
compute hash codes for evaluations.

10https://github.com/tensorflow/models/tree/master/research/delf

Citation
Citation
{Cao, Araujo, and Sim} 2020

Citation
Citation
{Radenovic, Iscen, Tolias, Avrithis, and Chum} 2018

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2007

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2008

Citation
Citation
{Cao, Araujo, and Sim} 2020

https://github.com/tensorflow/models/tree/master/research/delf

4 NG ET AL.: UNSUPERVISED HASHING WITH SDC

B Ablation study
Calibration distribution. We evaluate the effect of calibration distribution. Here we set
the contrastive loss Lcl = 0. We further test normalized Gaussian distribution (bounded
within [−1,1]) as well as a variety of Beta distributions. We observe in Table 2 that (1)
The performance Beta calibration is generally stable in the range of [2,5]; (2) Gaussian
calibration (N(µ = 0,σ = 0.3)) is similarly effective suggesting the flexibility of our SDC
in distribution selection.

Distributions CIFAR10 ImageNet100 GLDv2
Beta(0.2,0.2) 19.3 70.3 11.6
Beta(0.5,0.5) 54.8 76.3 11.9
Beta(0.7,0.7) 55.9 77.2 11.8
Beta(1,1) 58.4 79.0 12.0
Beta(2,2) 62.5 80.2 12.1
Beta(3,3) 62.5 80.3 12.0
Beta(5,5) 63.0 80.4 12.1
Beta(7,7) 62.6 81.3 11.8
Beta(10,10) 61.3 80.7 11.8
Gaussian 62.6 80.2 11.5

Table 1: Effect of the calibration distribution. Setting: 64-bits hash codes on CIFAR10 and
ImageNet and 512-bits on GLDv2.

Contrastive loss. We evaluate the effect of contrastive loss. Here we set α = β = 5. By
incorporating contrastive loss (Lcl), we observe notable performance enhancements. This
improvement can be attributed to the self-supervised loss’s ability to better adapt to the
dataset’s domain. Consequently, we observe a substantial performance gap on CIFAR10,
while a minimal gap is observed on ImageNet100.

CIFAR10 ImageNet100
w/ Lcl 66.3 80.6
wo/ Lcl 63.0 80.4

Table 2: Effect of the contrastive loss Lcl . Setting: 64-bits hash codes on CIFAR10 and
ImageNet.

NG ET AL.: UNSUPERVISED HASHING WITH SDC 5

Algorithm 1: SDC Loss Function.
1 # phi: non-linear hash layer
2 # N: number of pairs (half of the batch)
3 # x: features (2N, d), x2: features of randomly augmented input (2N, d)
4
5 # compute continuous codes
6 f = phi(x) # (2N, k)
7
8 # construct pairs
9 xi, xj = x[:N], x[N:] # (N, d)

10 fi, fj = f[:N], f[N:] # (N, k)
11 t, t_idx = sort(cossim(xi, xj)) # (N,)
12 s = cossim(fi, fj) # (N,)
13
14 # sort with t’s index
15 s = s[t_idx] # (N,)
16
17 # inverse CDF of beta distribution
18 C = beta_ppf(N, alpha=5, beta=5) # (N,)
19
20 # contrastive loss with simclr
21 loss_cl = SimCLR(x, x2)
22
23 loss_sdc = (s - C).abs().mean()
24 loss_q = (1 - cossim(f, f.sign())).mean()
25 loss = loss_sdc + lambda_q * loss_q + lambda_cl * loss_cl

C Algorithm
The algorithm of our method is summarized in Algorithm 1.

References
[1] Bingyi Cao, André Araujo, and Jack Sim. Unifying deep local and global features for

image search. In European Conference on Computer Vision, 2020.

[2] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S. Yu. Hashnet: Deep
learning to hash by continuation. In International Conference on Computer Vision,
2017.

[3] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yan-Tao
Zheng. Nus-wide: A real-world web image database from national university of singa-
pore. In Conference on Image and Video Retrieval, 2009.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009.

[5] Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng Chan. Deep polarized
network for supervised learning of accurate binary hashing codes. In International
Joint Conference on Artificial Intelligence, 2020.

[6] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimen-
sions via hashing. In International Conference on Very Large Data Bases, 1999.

6 NG ET AL.: UNSUPERVISED HASHING WITH SDC

[7] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative
quantization: A procrustean approach to learning binary codes for large-scale image
retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

[8] Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng Chan, Yi-Zhe Song, and Tao
Xiang. One loss for all: Deep hashing with a single cosine similarity based learning
objective. In Advances in Neural Information Processing Systems, 2021.

[9] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Annual ACM Symposium on Theory of Computing,
1998.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

[11] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009.

[12] Yunqiang Li and Jan van Gemert. Deep unsupervised image hashing by maximizing
bit entropy. In AAAI Conference on Artificial Intelligence, 2021.

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In European Conference on Computer Vision, 2014.

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, 2019.

[15] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Ob-
ject retrieval with large vocabularies and fast spatial matching. In Computer Vision and
Pattern Recognition, 2007.

[16] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Lost
in quantization: Improving particular object retrieval in large scale image databases. In
Computer Vision and Pattern Recognition, 2008.

[17] Zexuan Qiu, Qinliang Su, Zijing Ou, Jianxing Yu, and Changyou Chen. Unsupervised
hashing with contrastive information bottleneck. In International Joint Conference on
Artificial Intelligence, 2021.

[18] Filip Radenovic, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum.
Revisiting oxford and paris: Large-scale image retrieval benchmarking. In Computer
Vision and Pattern Recognition, 2018.

[19] Yuming Shen, Jie Qin, Jiaxin Chen, Mengyang Yu, Li Liu, Fan Zhu, Fumin Shen, and
Ling Shao. Auto-encoding twin-bottleneck hashing. In Computer Vision and Pattern
Recognition, 2020.

NG ET AL.: UNSUPERVISED HASHING WITH SDC 7

[20] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. Greedy hash: Towards fast
optimization for accurate hash coding in cnn. In Advances in Neural Information Pro-
cessing Systems, 2018.

[21] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In Advances in Neural
Information Processing Systems, 2009.

[22] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset
v2-a large-scale benchmark for instance-level recognition and retrieval. In Computer
Vision and Pattern Recognition, 2020.

[23] Erkun Yang, Cheng Deng, Tongliang Liu, Wei Liu, and Dacheng Tao. Semantic
structure-based unsupervised deep hashing. In International Joint Conference on Arti-
ficial Intelligence, 2018.

