
One-stage Progressive Dichotomous Segmentation

Jing Zhu Karim Ahmed Wenbo Li Yilin Shen Hongxia Jin Samsung Research America Al Center

Problem

Current existing methods can be classified into two categories. Multi-stage methods have the potential to generate superior results, but they often come with time and memory expenses. On the contrary, one-stage methods offer a more straightforward approach with lower computation costs. However, they typically yield inferior performance because many effective high-complexity networks (e.g., transformer), cannot directly handle high-resolution images due to resource

limit.

Contribution

- We propose a one-stage framework with an efficient yet effective convolutional attention module that could directly work on high-resolution images for dichotomous segmentation.
- We design the progressive prediction schema into the decoder of the model which enables the gradual refinement of the segmentation map level by level. A multi-scale supervision loss is introduced to enhance the model learning.

Approach

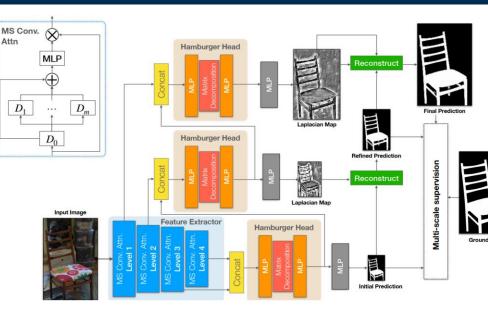


Figure 2: The framework of our proposed model, which consists of a feature extractor with multi-scale convolutional attentions to generate effective multi-scale features, and a progressive decoder with hamburger heads to gradually utilize the multi-scale features to achieve high-resolution results. Multi-scale supervision is introduced to enhance the model's training capabilities. An overview of the multi-scale convolution attention is depicted at the upper left, where $D_0 \sim D_m$ denote depth-wise convolutions.

- **Novel Point 1:** a one-stage framework with an efficient yet effective multi-scale convolutional attention feature extractor, enabling direct processing of high-resolution images for dichotomous segmentation.
- **Novel Point 2:** a progressive decoder with a specifically designed progressive prediction mechanism, which generates an initial segmentation map using the lowest-resolution features and progressively refines the map's resolution level by level, leveraging the extracted multi-scale features from the feature extractor.

Samsung Research

Experimental Results

Table 1: Comparison of dichotomous segmentation on four DIS5K [28] testing subsets with alternative approaches. Overall performance is computed by taking the mean value of the scores from the four subsets. The best performance has been **bolded** and the second best result is marked in **blue**. Higher F^{nx} , F^{w} , S, E scores and lower M, HCE values indicate the better performance. Our method outperforms all the the single-stage methods with fewer model parameters and computational operations (FLOPs).

Dataset	Metric	Multi-stage		Single-stage							
Dataset	Methe	HRSOD [36]	InSpyReNet [20]	PFNet [25]	HRNet [30]	SegNeXt [16]	IS-Net [28]	PGNet [32]	Ours		
	Params(M)	32.4	90.7	46.5	63.6	27.6	44.0	72.7	28.0		
	Time (ms)	425.7	733.0	70.5	172.6	275.7	80.5	127.8	287.0		
	FLOPs (G)	315.7	461.2	59.9	373.8	137.6	159.8	160.3	129.2		
	Input Size	1024 ²	1024 ²	416 ²	1024 ²	1024 ²	1024 ²	1024 ²	1024^{2}		
	$F^{mx}\uparrow$	0.726	0.854	0.646	0.668	0.771	0.740	0.821	0.822		
	$F^w\uparrow$	0.658	0.792	0.552	0.579	0.681	0.662	0.728	0.745		
DIS-TE1	$M\downarrow$	0.079	0.044	0.094	0.088	0.076	0.074	0.070	0.069		
DIS-TET	<i>S</i> ↑	0.766	0.873	0.722	0.742	0.789	0.787	0.834	0.845		
	$E\uparrow$	0.803	0.893	0.786	0.797	0.820	0.820	0.846	0.859		
	$HCE \downarrow$	198	110	253	262	177	149	173	147		
	$F^{mx}\uparrow$	0.781	0.895	0.720	0.747	0.826	0.799	0.841	0.857		
	$F^w \uparrow$	0.714	0.846	0.633	0.664	0.741	0.728	0.782	0.802		
DIS-TE2	$M\downarrow$	0.074	0.038	0.096	0.087	0.068	0.070	0.066	0.066		
DIS-1E2	ST	0.795	0.905	0.761	0.784	0.828	0.823	0.842	0.867		
	$E\uparrow$	0.832	0.925	0.829	0.840	0.879	0.858	0.888	0.903		
	$HCE \downarrow$	467	255	567	555	427	340	405	346		
	$F^{mx}\uparrow$	0.806	0.912	0.751	0.784	0.843	0.830	0.877	0.882		
	$F^w \uparrow$	0.732	0.868	0.664	0.700	0.765	0.758	0.803	0.831		
DIS-TE3	$M\downarrow$	0.069	0.038	0.092	0.080	0.062	0.064	0.059	0.058		
DIS-1E5	$S\uparrow$	0.819	0.915	0.777	0.805	0.841	0.836	0.857	0.873		
	$E\uparrow$	0.863	0.942	0.854	0.869	0.899	0.883	0.906	0.912		
	$HCE \downarrow$	1007	523	1082	1049	871	687	838	680		
	$F^{mx}\uparrow$	0.789	0.902	0.731	0.772	0.834	0.827	0.859	0.863		
	$F^w \uparrow$	0.726	0.847	0.647	0.687	0.755	0.753	0.798	0.819		
DIS-TE4	$M\downarrow$	0.072	0.046	0.107	0.092	0.069	0.072	0.067	0.066		
DIS-1E4	S↑	0.804	0.902	0.763	0.792	0.823	0.830	0.844	0.870		
	$E\uparrow$	0.848	0.927	0.838	0.854	0.883	0.870	0.895	0.908		
	$HCE \downarrow$	3720	2336	3803	3864	3679	2888	3449	2768		
	$F^{mx}\uparrow$	0.776	0.890	0.712	0.743	0.818	0.799	0.849	0.856		
	$F^w \uparrow$	0.708	0.838	0.624	0.658	0.735	0.726	0.778	0.799		
0	$M\downarrow$	0.074	0.042	0.097	0.087	0.069	0.070	0.065	0.064		
Overall	S↑	0.796	0.898	0.756	0.781	0.820	0.819	0.844	0.864		
	$E\uparrow$	0.837	0.922	0.827	0.840	0.870	0.858	0.884	0.896		
	$HCE \downarrow$	1348	806	1427	1432	1289	1016	1216	986		

Table 2: The ablation studies on DIS-TE1 to verify the effectiveness of each module. We can observe the progressive schema has a greater impact on the model's performance than the multi-scale supervision, while they together yield the best performance.

	Deco		Super	F^{mx} \uparrow	$F^w \uparrow$	$M\downarrow$	$S\uparrow$	$E\uparrow$	HCE \downarrow		
	Single Head	Progressive	Single-scale	Multi-Scale	e * '			51	2	neb ţ	
	\checkmark		✓		0.758	0.676	0.079	0.772	0.813	211	
		\checkmark	\checkmark		0.806	0.729	0.073	0.817	0.834	169	
		\checkmark		✓	0.822	0.745	0.069	0.845	0.859	147	
	Image GT		IS	IS-Net		InSpyReNet		PGNet		Ours	
		I ∎− j−			10-1		ю				
1				2	11		[600		- M		