Towards Robust Few-shot Point Cloud
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® Component-level Clean Noise separation (CCNS): CCNS conducts feature component-level
contrastive learning fo_r each episode class. z;, is the anchor and is the j-th feature component of k-th ® In-episode noise samples noisy shots from other N-1 classes of the current episode.
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3 | ¥ support point cloud. zé is a positive sample with the same semantic class as z;. ® Out-episode noise samples noisy shots from outside of the N classes in the C,,5p¢;-
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semantic segmentation.
® Base class dataset: We can clean the label noise by either manual checking or ® Multi-scale Degree-based Noise Suppression (MDNS):
data-driven algorithm given enough time and budget. » We build a fully connected graph G on the K support shots for each way. The weight ;; of the edge Noisy Support Set mout Query  Ground Trath — ours
® Novel class dataset: It is impossible to manually clean the label noise for the encodes the affinity between the two end nodes i and j as follow: ; :
infinite novel classes. Neither can we adopt data-driven algorithms since it would y . 3 s
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overfit to the small size of the support set. An example where a sofa and a curtain Wi = + .
0, otherwise

\ are wrongly annotated in support set 1 and 2, respectively.
» Degree reflects nodes connection in the graph:

di =Y Wi

2. Technique Contributions

» Compute clean indicator I; to indicate whether j-th shot is clean:

® \We propose a component-level clean noise separation method for representation 1 ifd > thr
learning to enhance the class-level discrimination in the embedding space. Iy i= .
0, otherwise Qualitative comparison of a 2-way 5-shot point cloud segmentation with 40% out-
® \We propose a multi-scale degree-based noise suppression scheme that is able to » Multi-scale evaluation: to better evaluate point cloud with complex distribution. episode noise on S3DIS.
effectively remove noisy samples from the small support set for each new class K \_
during testing.
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5. Visualization of CCNS 8. Ablation Study
3. Why Choose AttMPTI!]
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® Comparison of prototype cleanness of different methods on a noisy support set. ‘1’ A Noisil Class 2 ReferenCeS
means the prototype only containing clean-labeled points, and ‘0" means the T A Target Class
prototype only containing points that are incorrectly labeled as the target class.
Values in between 0-1 represent the portion of clean labeled points in the [1] Zhao, Na, Tat-Seng Chua, and Gim Hee Lee. "Few-shot 3d point cloud semantic
prototype. Visualization on a 5-shot support set with 2 noisy shots. Each dot represents a point in the feature space segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and
® The robustness of AttMPTI is subjected to discriminativity of the feature and each triangle represents a feature component. Different colors represent different classes with blue Pattern Recognition. 2021
\ embeddings. kindicating the target class. The arrow shows the direction to pull the feature components.
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