

Towards Robust Few-shot Point Cloud Semantic Segmentation

Yating Xu¹, Na Zhao², Gim Hee Lee¹ ¹National University of Singapore, ²Singapore University of Technology and Design

6. Experiments 4. Overall Framework Projection Head Foreground Object Generation Generation Component Component Noisy onent-level Clean Noise Separation

• Component-level Clean Noise separation (CCNS): CCNS conducts feature component-level contrastive learning for each episode class. z_k^i is the anchor and is the *i*-th feature component of k-th support point cloud. z_a^J is a positive sample with the same semantic class as z_k^i .

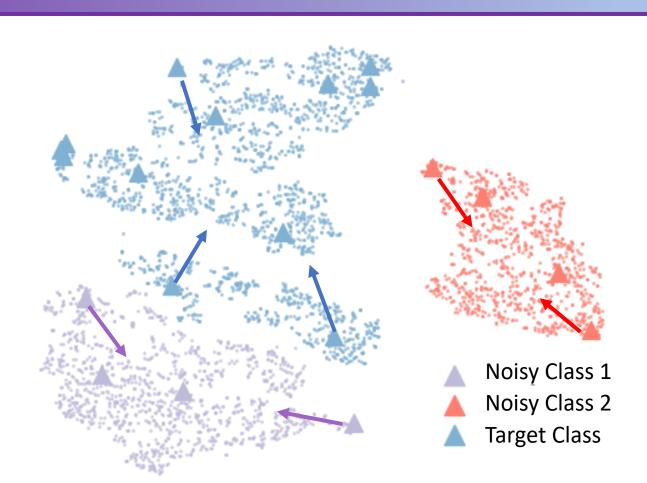
$$\mathcal{L}_{\text{CCNS}} = \frac{1}{KR} \sum_{k=1}^{K} \sum_{i=1}^{R} \left(\frac{-1}{|A(z_k^i)|} \sum_{z_g^j \in A(z_k^i)} \log \frac{\exp\left(z_k^i \cdot z_g^j / \tau\right)}{\sum_{h, b \setminus (k,i)} \exp\left(z_k^i \cdot z_h^b / \tau\right)} \right)$$

• Multi-scale Degree-based Noise Suppression (MDNS):

 \succ We build a fully connected graph G on the K support shots for each way. The weight W_{ii} of the edge encodes the affinity between the two end nodes *i* and *j* as follow:

$$W_{ij} := egin{cases} \left[x_i^{ op} x_j
ight]_+^{\gamma}, & ext{if } i
eq j \ 0, & ext{otherwise} \end{cases}$$

> Degree reflects nodes connection in the graph:


$$d_i = \sum_j W_{ij}$$

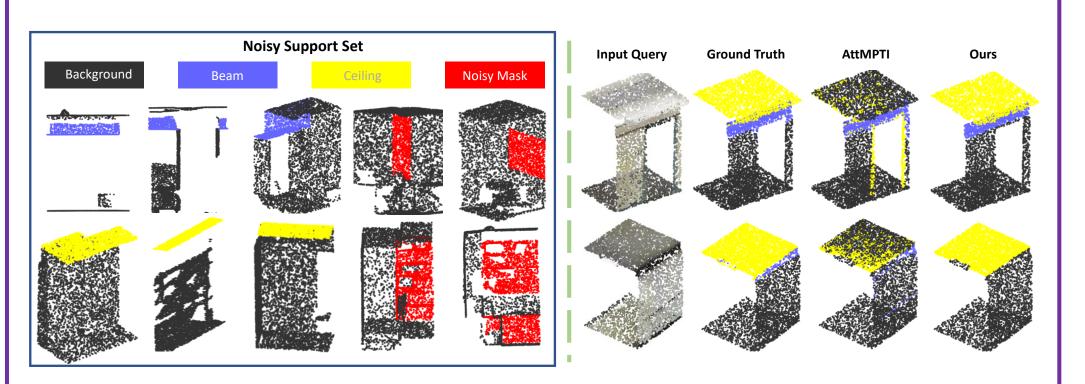
 \succ Compute clean indicator I_i to indicate whether *i*-th shot is clean:

$$I_i := \begin{cases} 1 & \text{if } d_i > thr \\ 0, & \text{otherwise} \end{cases}$$

> Multi-scale evaluation: to better evaluate point cloud with complex distribution.

5. Visualization of CCNS

Visualization on a 5-shot support set with 2 noisy shots. Each dot represents a point in the feature space and each triangle represents a feature component. Different colors represent different classes with blue indicating the target class. The arrow shows the direction to pull the feature components.


BMVC

model	0%		In-episode Noise				Out-episode Noise			
			20%		40%		40%		60%	
	2-way	3-way	2-way	3-way	2-way	3-way	2-way	3-way	2-way	3-way
PNAL 💷	13.67	8.12	8.94	5.45	5.95	3.13	8.08	4.28	4.77	2.87
Tra-NFS [🗳]	44.98	31.67	43.44	30.68	37.27	27.39	41.72	28.43	35.67	23.20
ProtoNet [🛄]	57.02	46.78	54.21	43.57	42.57	36.71	50.01	39.31	44.96	36.08
AttMPTI [🗖]	65.90	51.71	60.01	47.96	38.81	37.56	58.60	44.76	51.18	40.32
Ours	68.21	54.79	66.02	52.91	58.01	48.72	66.09	50.71	58.84	46.19
Ours	68.21	54.79		ising m	IoU met	48.72 ric on 2-v		ot and 3	3-way 5-	
Ours Table	68.21 1: Resul	54.79	S3DIS ι	ising m In-epis	IoU met	ric on 2-v	vay 5-sh	ot and 3 Out-epi	3-way 5-s sode Noise	shot.
Ours	68.21 1: Resul	54.79 Its on the %	S3DIS 1	Ising m In-epis	IoU met	ric on 2-v	vay 5-sh 409	ot and 3 Out-epi	3-way 5-8 sode Noise	shot.
Ours Table	68.21 1: Resul	54.79 Its on the	S3DIS ι	ising m In-epis	IoU met	ric on 2-v	vay 5-sh	ot and 3 Out-epi	3-way 5-s sode Noise	shot.
Ours Table	68.21 1: Resul	54.79 Its on the %	S3DIS 1	Ising m In-epis	IoU met	ric on 2-v	vay 5-sh 409	ot and 3 Out-epi	3-way 5-8 sode Noise	shot.
Ours Table model	68.21 1: Resul	54.79 Its on the % 3-way	S3DIS u 209 2-way	In-epis	IoU met ode Noise 40 2-way	ric on 2-v % 3-way	vay 5-sh 409 2-way	ot and 3 Out-epi % 3-way	B-way 5-s sode Noise 60 2-way	shot. 9% 3-way
Ours Table model Tra-NFS [68.21 1: Resul 09 2-way 41.89	54.79 Its on the % 3-way 31.56	S3DIS 1 209 2-way 39.72	In-epis % 3-way 29.20	IoU met ode Noise 40 2-way 34.25	ric on 2-v % 3-way 25.07	409 2-way 38.42	ot and 3 Out-epi % 3-way 27.29	3-way 5-8 sode Noise 60 2-way 34.68	shot. 0% 3-way 23.78

• In-episode noise samples noisy shots from other N-1 classes of the current episode.

• **Out-episode noise** samples noisy shots from outside of the N classes in the C_{novel} .

7. Qualitative Results

Qualitative comparison of a 2-way 5-shot point cloud segmentation with 40% outepisode noise on S3DIS.

8. Ablation Study

model	0%	In-episo	de Noise	Out-episode Noise		
model	0%	20%	40%	40%	60%	
AttMPTI	65.90	60.01	38.81	58.60	51.11	
AttMPTI+CCNS	68.50	63.10	41.75	63.77	56.79	
AttMPTI+MDNS	64.80	63.03	52.78	61.73	52.98	
Ours	68.21	66.02	58.01	66.09	58.84	

References

[1] Zhao, Na, Tat-Seng Chua, and Gim Hee Lee. "Few-shot 3d point cloud semantic segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021