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1 Details About Network Architecture

1.1 Network architecture

As described in Sec. 3 in the main paper, our network consists of image feature extrac-
tor, transformer decoder, and task-specific modules. Our main difference in the architecture
is to concentrate on the transformer decoder. The image feature extractor is based on the
Mask2Former [1], which consists of a backbone network and a pixel decoder. We can select
various backbone models such as residual network [2] and Swin-transformer [4]. Follow-
ing [1], we use multi-scale deformable attention Transformer (MSDeformAttn) [7] as the
pixel decoder. Regarding the transformer decoder, each individual human in the given image
corresponds to each of proposed human-centric queries, and we use 100 queries for all ex-
periments. The decoder consists of 8 decoder layers. Distinct form [1], in each decoder layer,
we use a deformable attention layer [7] as a cross-attention layer, and a self-attention layer
is placed before the deformable attention layer. Each deformable attention layer receives 3
scales of image feature (1/32, 1/16, 1/8 of the feature resolution) from the pixel decoder.

1.2 Multi-scale attention with keypoints

While, for simplicity in Eq. 6 in the main paper, we describe the mathematical derivation
of deformable attention with keypoints at a single scale, the equation can naturally be used
to the case of multi-scale attention module. Assume that there are Ns image feature maps
xs ∈ RHs×Ws×D for scale index s. By repeatedly applying the sampling process of Eq. 5 in
the main paper for each xs, sampled feature Vm,s is obtained for each scale s. The multi-scale
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attention value Vm ∈ RNpNs×D/Nh is defined as

Vm =Cat
(
V T

m,1, . . . ,V T
m,Ns

)T
.

Now, the multi-scale attention output can be obtained by the same Eq. 6 in the main paper if
one assumes the attention coefficient having wider dimension: Am ∈ R1×NpNs .

2 Details About Experimental Setting

2.1 Loss function
We use a binary cross-entropy loss for human classification. For the segmentation, we use
a binary cross-entropy and the dice loss [5] as was done in [1]. For the regression of the
bounding box and joint positions, we use a RLE loss function [3] because RLE is known to be
better than L1 loss for regression problems. We train multiple tasks together with our unified
architecture. To this end, a total training loss is defined with the weighted summation of
multiple loss functions for the tasks. Regarding bipartite matching, we use the classification
and the mask loss [1] instead of using all the task losses. We empirically found that it is
sufficient for matching.

Specifically, we use four types of loss functions according to the target tasks: classifi-
cation, segmentation, bbox, and pose. We denote these loss functions as Lc, Ls, Lb, and Lp,
respectively. Then, the total training loss is defined as

Ltotal = λcLc +λsLs +λbLb +λpLp. (1)

where λc, λs, λb and λp are the mixing weights and are set to 2, 5, 0.2, and 0.2, respectively,
in our experiment. Because there are many possible combinations of mixing weights for
multiple tasks, another best combination would exist. Still, our models with these weights
show practically reasonable performance in the target tasks without sophisticated tuning to
search the best hyper-parameters.

The training loss is applied to the matched pairs of instances between the prediction and
the ground-truth. We also use an auxiliary training loss by attaching the prediction layer to
each transformer decoder layer, similar to [1]. The auxiliary loss is same with Ltotal .

2.2 Data augmentation
As described in Sec. 4 in the main paper, we follow a data augmentation scheme used in
[1]. Specifically, for each image, we apply random scaling to the image with the range [0.1,
2.0] and crop the scaled image with the fixed size of 1024× 1024. If the scaled image is
smaller than the cropping size, we apply zero-padding to right- and bottom-side of the image
to produce the result image of 1024×1024.

3 Additional Experiments

3.1 Canonical space of the pose part of learnable keypoints
As described in Sec. 3.1 in the main paper, we normalized the coordinates of the pose part in
our learnable keypoints by the box coordinate of the bbox part; we refer it as the canonical
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Pose joint coordinates of learnable keypoints
Accuracy (mAP)

Det. Pose. Seg.

In the image space 54.8 55.3 49.6
In the canonical space 56.1 64.4 51.7

Table 1: Effectiveness of employing the canonical space for the pose part of our learnable
keypoints.

Variants of Learnable keypoints
Accuracy (mAP)

Det. Pose. Seg.

Canonical space coordinate 56.1 64.4 51.7
Image space coordinate 56.2 63.0 51.5

Canonical space embedding 56.2 63.7 51.8

Table 2: Effect of different forms of leranable keypoints used in task-specific heads (segmen-
tation and detection).

space. We can also define the coordinates of pose part in the image space instead of canonical
space. We empirically found that representing the pose part in the image space causes a large
performance drop in pose estimation and it also degrades the accuracy of two other tasks
(Table 1).

3.2 Variants of the learnable keypoints
In the experiments in the main paper, our proposed components successfully improve learn-
able keypoints and the performance of various tasks. Meanwhile, different forms of learn-
able keypoints as conditional information may lead more performance improvement because
there can be a suitable form of the conditional information for each task. In this experiment,
we explore the possibility. In the previous experiment, we empirically found that the current
form using the coordinates of pose joints in the canonical space is suitable for learning pose
estimation. Therefore, we test different forms for only object detection and segmentation
tasks. For the tasks, we test other forms such as the joint coordinates in the image space or
keypoint embedding instead of coordinate. For keypoint embedding, we use the same process
of obtaining structural embedding used in (Eq. 3 in the main paper).

The canonical space coordinate has better accuracy in pose estimation compared to the
other variants while having the comparable accuracy on detection and segmentation tasks
(Table 2). This implies that our coordinate information in learnable keypoints can be gener-
ally applied to various tasks.

3.3 OCHuman dataset
In this section, we present quantitative results on the OCHuman dataset [6]. Compared to
Pose2Seg [6], our method achieves better performance in both detection and segmentation
tasks (Table 3). Compared to a state-of-the-art segmentation method (Mask2Former [1]),
our method shows a comparable accuracy in segmentation. Compared to our baseline multi-
tasking model (BaseNet-DPS), our approach still induces significant improvements in pose
estimation and segmentation on this different dataset.

We show additional visual results of our methods on the COCO and OCHuman datasets
(Fig. 1).
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Model Backbone
OCHuman Val (mAP) OCHuman Test (mAP)

Det. Pose. Seg. Det. Pose. Seg.

Pose2Seg R-50 ✗ 28.5 22.2 ✗ 30.3 23.8
Mask2Former Swin-B ✗ ✗ 27.5 ✗ ✗ 27.8
BaseNet-DPS Swin-B 19.8 30.2 25.6 19.4 29.7 25.5

HCQNet Swin-B 19.7 31.0 27.1 19.4 30.9 27.3

Table 3: Comparison on the OCHuman Dataset.

Figure 1: Additional visual results of our HCQNet on scenes containing dynamic human
poses.
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