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CONTRIBUTION
We propose a hybrid method; a self-supervised fea-
ture encoder working with a classical matching al-
gorithm.
1. A simple and practical self-supervised method to
train a feature encoder which can be readily inte-
grated in an OpenCV stereo pipeline and achieves
competitive performance.
2. A novel method to express permutation as a pre-
text task to obtain strong stereo features that does
not require hands-on knowledge of the dataset such as
ground truth depth or scene content.

OVERVIEW
∙ Deep stereo algorithms show strong performances yet
this shift from physics-model-driven to data-driven has
not been followed by industrial adoption.
∙ When stereo disparity is the only source of depth
information, ground truth is rarely available for
training supervised deep methods.
∙ During training, our approach aims to recover a
strong feature representation, i.e. it enables dense
stereo algorithms to compute accurate disparity results.
∙ At inference time, our method outputs a matching
cost volume which is directly integrated with indus-
try standard classical stereo algorithms, such as the
OpenCV stereoSGBM, and leads to strong perfor-
mances on natural image datasets.

PERMUTATION MODEL
The permutation provides a natural representation of
stereo constraints by simultaneously representing:
1. explicit cross-attention in left-right stereo pairs,
2. matching ambiguities such as occlusions, out-of-
image pixels or textureless regions.
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SELF-SUPERVISED MODEL FOR FEATURE LEARNING
Neural architecture that encourages a feature encoder to

accurately represent images for the purpose of stereo matching.

TRAINING ON THE PERMUTATION PRETEXT TASK
By formulating stereo matching as an optimal transport
problem, the iterative application of symmetric normal-
ization simultaneously normalizes columns and rows.
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PRACTICAL STEREO INFERENCE
Pipeline to solve for disparity by providing the cost volume to a classical stereo

method, such as the popular and publicly available stereoSGBM from OpenCV.

∙ Monocular Disparity Completion. Left-disparity propagation, the most naive disparity completion strategy. Is
chosen because it does not introduce any additional knowledge to the disparity.

ENDOSCOPIC SCENES
Typical Result

Failure Modes

Comparison to State-of-the-Art
Methods Mean SSIM std. SSIM

ELAS 47.3 0.08
SPS 54.7 0.09

V-Siamese 60.4 0.07
StereoCRL 83.7 0.02

OpenCV SGBM 79.0 0.07
LEAStereo 83.9 0.05

ssf-SGBM(Ours) 84.4 0.05

DRIVING SCENES
Comparison to State-of-the-Art

Kitti 2015 (D1)
Method fg Noc All

SG
M SGM 20.59 9.47 10.86

SGM_RVC 13.00 5.62 6.38
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d Zhou et al. - 8.61 9.91
SegStereo - 7.70 8.79

OASM-Net 19.42 7.39 8.98
PASMnet 16.36 6.69 7.23

Perm. Stereo 15.47 6.72 7.18
Flow2Stereo 14.62 6.29 6.61
CRD_Fusion 13.68 5.69 6.11

ssf-SGBM(Ours) 13.81 5.77 6.41


