
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

AUTHOR(S): BMVC AUTHOR GUIDELINES 1

Floorplan Restoration by Structure
Hallucinating Transformer Cascades
Supplementary material

BMVC 2023 Submission # 90

The supplementary document provides details of the datasets (Appendix A), the full
specifications of our neural architecture (Appendix B), discussion on computational com-
plexity (subsection B.1), details of our loss functions (subsection B.2), additional details
on refinement process (subsection B.3), results under different IOUs (Figure 1), and more
quantitative and qualitative results (Table 5 and Figures 2 and 3).

A Datasets details
SUN360 is a popular indoor panorama dataset [7]. For floorplans, RPLAN provides sixty
thousand synthetic samples in a vector-graphics format [6]. LIFULL HOME’s dataset pro-
vides five million real samples in a raster format [4]. For both panorama images and floor-
plans, Structured3D provides 3,500 synthetic houses/apartments [8]. For real samples, Mat-
terport3D provides 90 houses [2], while their coverage is extremely dense.

ZIND dataset is the closest to ours with 1,500 real houses/apartments, where the panorama
coverage is sparse, and human interventions were required for camera pose estimation and
floorplan reconstruction [3]. Nonetheless, ensuring a panorama(s) is taken in every room
(except stairs and corridors) makes the setup small-scale and highly controlled. Our data
comes from uncontrolled crowd-sourcing, where many rooms are not photographed, posing
fundamental challenges to existing techniques.

In our proposed dataset, the number of panoramas per house ranges from 1 to 7. Specif-
ically, (31, 129, 222, 199, 118, 2) houses contain (1, 2, 3, 4, 5, 7) panoramas, respectively.
The test set contains (9, 19, 15, 7) houses containing (2, 3, 4, 5) panorama images, respec-
tively. The number of invisible rooms varies between 1 and 17. The number of invisible
doors varies between 0 and 11.

As it has been stated in main paper, in order to solve class imbalance problem we use
a weighing constant (w(i)) that is inversely proportional to the number of samples in the
training set, which is (1.135, 3.7, 0.6, 0.63, 0.47, 1.2, 2.2, 0.76, 0.48, 0.18, 0.763, 0.524, 0.33,
0.7, and 0.1) for (living room, kitchen, bedroom, toilet, balcony, corridor, tatami, washroom.
bathroom, closet, closet door, open door, door, entrance, and no-room), respectively. Table 1
present more detail on dataset statistic.

To evaluate the robustness across different datasets, we also used RPLAN [6] datsaset
which is a public dataset. We use Housegan++ [5] data parser to parse RPLAN, which
results in 60K houses; the number of rooms per house varies between 5 to 8. We divide

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Xiao, Ehinger, Oliva, and Torralba} 2012

Citation
Citation
{Wu, Fu, Tang, Wang, Qi, and Liu} 2019

Citation
Citation
{Liu, Wu, Kohli, and Furukawa} 2017

Citation
Citation
{Zheng, Zhang, Li, Tang, Gao, and Zhou} 2020

Citation
Citation
{Chang, Dai, Funkhouser, Halber, Niessner, Savva, Song, Zeng, and Zhang} 2017

Citation
Citation
{Cruz, Hutchcroft, Li, Khosravan, Boyadzhiev, and Kang} 2021

Citation
Citation
{Wu, Fu, Tang, Wang, Qi, and Liu} 2019

Citation
Citation
{Nauata, Hosseini, Chang, Chu, Cheng, and Furukawa} 2021

046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091

2 AUTHOR(S): BMVC AUTHOR GUIDELINES

Table 1: Dataset statistics. We divide the set into five groups based on the number of rooms
(2-5, 6-9, 10-13, 14-17, 18+). In each group, the table reports (Top) the number of samples;
(Middle) the ave/std of the number of three types of rooms; and (Bottom) the ave/std of the
number of two types of doors.

of Rooms 2-5 6-9 10-13 14-17 18+
of Samples 60 243 298 84 16

R
oo

m Visible 2.4/0.9 3.5/1.2 3.7/1.6 3.9/1.5 3.4/1.0
Invis. direct 1.6/0.5 3.7/0.9 5.2/1.6 6.4/2.2 7.2/2.4
Invis. indire. 0.7/0.9 1.4/1.4 3.7/2.2 5.0/2.8 8.2/3.2

D
oo

r Visible 3.0/1.2 7.2/1.6 8.4/2.5 10.6/4.0 11.4/2.3
Invisible 0.8/1.0 1.5/1.7 4.4/3.3 5.9/3.2 9.1/3.5

the dataset into 55K for training and 5K for testing. Using our dataset’s statistics, we flag
the number of rooms per house as invisible. The number of visible rooms per house varies
between 2 to 7, the number of invisible rooms varies between 1 to 6, and the number of
invisible doors varies between 0 to 5.

B Network Architecture

Category Wise CNN takes an input image of the resolution 800×800×14. For the house
with X number of visible rooms, We will have X number of C-wise CNN for rooms category
were the output will be X ×256×25×25, then we apply max function which result output
of that to be 256×25×25. Same will be applied to door and room (both) category. For doors
only category there is no need for max, as we give all doors at same time to one C-wise CNN
block. Then we concatenate them resulting output of all to be 3×256, then we reshape them
to get input sequence for encoder to be 1875×256, let’s refer it as src.

Table 2: Category Wise CNN (C-Wise CNN) block
Layer name/type Specification Output size

Conv1 7×7, 64, stride 2 64×400×400

Conv block2

3×3, maxpool, stride 2

256×200×200
 1×1,64

3×3,64
1×1,256

×3

Conv block3

 1×1,128
3×3,128
1×1,512

×4 512×100×100

Conv block4

 1×1,256
3×3,256
1×1,1024

×6 1024×50×50

Conv block5

 1×1,512
3×3,512
1×1,2048

×3 2048×25×25

Conv6 1×1, 256 256×25×25

Encoder has 6 layers (See Table 3), it receives src, position, and type embedding as input. As

092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

AUTHOR(S): BMVC AUTHOR GUIDELINES 3

Table 3: One layer of encoder, we have 6 layers
Layer name/type input Specification Output size

Multi head attention src embed_dim=256, num_heads=8 1875×256 (src2)
Dropout src2 dropout=0.1 1875×256 (src3)

LayerNorm src3+src normalized_shape=256 1875×256 (src4)
Linear1, ReLU src4 in_features=256, out_features=2048 1875×2048 (src5)

Dropout src5 dropout=0.1 1875×2048 (src6)
Linear2 src6 in_features=2048, out_features=256 1875×256(src7)
Dropout src7 dropout=0.1 1875×256 (src8)

LayerNorm src8+src4 normalized_shape=256 1875×256 (src9)

positional embedding shape is 625×256, we concatenate it by itself three times to produce
1875× 256 positional embedding. Type embedding shape is 3× 256, we concatenate each
embedding related to each category by itself 625 times and concatenate all them together
to produce 1875× 256 type embedding. Encoder input is summation of src and those two
embeddings.

Final output of encoder will be 1875×256. We only use the ones for room-door (both)
category as decoder input which will be 625×256, lets refer this as memory (Mem).

Decoder has three cascaded blocks and 6 layers in each block. Table 4 shows one layer in
one block. Let us assume that we have Y dangling doors. then number of queries for first
decoder will be Y, second will be Y+15 and third will be Y+30. Lets show each cascade input
queries as tgt. The first cascade input is Y dummy queries and encoder output (Mem). Then
first cascade output will be concatenate with 15 dummy queries the result is input queries
for second decoder cascade, second cascade also receives Mem as input. For last cascade,
second cascade output will be concatenate with 15 dummy queries and same as other two
cascades, third cascade also receives Mem too.

Table 4: One layer of decoder, we have 6 layers, Y is number of input queries, in first cascade
it is equal to number of dangling doors, in second it is number of dangling doors+15, and in
third number of dangling doors+30

Layer name/type input Specification Output size
Multi head attention tgt embed_dim=256, num_heads=8 Y ×256 (tgt2)

Dropout tgt2 dropout=0.1 Y ×256 (tgt3)
LayerNorm tgt3+tgt normalized_shape=256 Y ×256 (tgt4)

Multi head attention Mem, tgt embed_dim=256, num_heads=8 Y ×256 (tgt5)
Dropout tgt6 dropout=0.1 Y ×256 (tgt7)

LayerNorm tgt7+tgt4 normalized_shape=256 Y ×256 (tgt8)
Linear1, ReLU tgt8 in_features=256, out_features=2048 Y ×2048 (tgt9)

Dropout tgt9 dropout=0.1 Y ×2048 (tgt10)
Linear2 tgt10 in_features=2048, out_features=256 Y ×256(tgt11)
Dropout tgt11 dropout=0.1 Y ×256 (tgt12)

LayerNorm tgt8+tgt12 normalized_shape=256 Y ×256 (tgt13)

B.1 Computational complexity
The number of network parameters is 50 million ResNet 50. As a reference, the network size
of DETR [3] resp. 40 million. Note that our network size is not very different from other

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

4 AUTHOR(S): BMVC AUTHOR GUIDELINES

standard Transformer based architecture. The reason for choosing a batch size of 1 is not
due to memory constraints, but to accommodate the varying number of visible doors/rooms
per instance during implementation.

B.2 Loss functions
Without loss of generality, we use the second cascade as an example to define loss functions,
where reconstructed invisible room instances are matched against the corresponding ground-
truth. The loss functions consist of the three terms for the room-type classification, the
bounding box parameter regression, and the segmentation mask estimation:

L = Ltype +Lbbox +Lseg, (1)

Ltype =
1

|Iall | ∑
i∈Iall

−w(i)log(pi), (2)

Lbbox =
1

|Imatch| ∑
i∈Imatch

5
∥∥bi − b̂i

∥∥
1 −2 IOU(bi, b̂i), (3)

Lseg =
5

|Imatch| ∑
i∈Imatch

[
Ldice(mi, m̂i)+

1
|P| ∑

p∈P
L f ocal(m

p
i , m̂

p
i)

]
. (4)

Ltype is a standard softmax loss with per-category weighing. Iall is a set of indexes of
all the reconstructed room instances. With abuse of notation, pi denotes the classification
score of the GT room type (i.e., the room type of the matched GT). w(i) denotes a weight
associated with the GT room type to compensate for the imbalance in the training data.
Concretely, the weight is set inversely proportional to the number of samples in the training
set.

Lbbox sums the discrepancies of the bounding box estimation over the matched instances.
The first term is the L1 norm of the 4-dimensional bounding box parameter vector (the cen-
ter, the width, and the height in the normalized image coordinate). bi denotes the estimated
parameter vector and b̂i denotes the corresponding GT vector. The second term is the in-
tersection over the union score between the reconstructed and the ground-truth bounding
boxes.

Lseg sums the discrepancy of the segmentation mask and the matched instance. The first
term is the standard dice loss between the estimated mask (mi) and the GT (m̂i). The second
term is the average focal loss of the per-pixel mask value. P denotes the set of pixels in the
domain. mp

i (resp. m̂p
i) denotes the estimated (resp. GT) per-pixel mask value.

B.3 Final floorplan refinement
Here we give a few more details on our refinement process. RPLAN dataset [6] was initially
used to train House-GAN++ but is synthetic and may exhibit incompatible database bias.
We use LIFULL HOME’S dataset [1] instead. Since the goal is the refinement without
overall arrangement changes, we use fully-connected graphs for training and testing. The
reconstructed floorplan from our cascading decoder is specified as the input constraint. In the
first iteration, we give our last cascade output as inputs mask to Housegan++. The predicted
mask of the previous iteration will be input for each node from the second iteration, and we
continue this to the 10th iteration. By doing this, as we are limiting Housegan++, masks only
get refined and curvy edges will change to manhattan shapes.

Citation
Citation
{Wu, Fu, Tang, Wang, Qi, and Liu} 2019

Citation
Citation
{LIF}

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

AUTHOR(S): BMVC AUTHOR GUIDELINES 5

C Additional Experimental Results

C.1 LPIPS and FID Results

As discussed in the main paper, FID and LPIPS are not as powerful metrics as much as our
main metric to show if our method is successful in our unique task however we show them
here for the reference.

Table 5: FID and LPIPS results. We compare against MAT, Mask-RCNN (Mrcnn), House-
GAN++, and DETR with ResNet-50 backbone. Input partial floorplans are ground-truth.

Method ↓ FID ↓ LPIPS
MAT 80.9 0.245
Mrcnn 76.0 0.241
House-GAN++ 45.6 0.220
DETR 79.1 0.243
Ours 76.8 0.242
Our* 42.4 0.214

C.2 Additional results on different IOU-thresholds

In Figure 1 we are providing recall and precision graph for different IOUs starting from 0
going up to 1, increasing by 0.1. Both the precision and the recall decrease as we increase
the IOU threshold. As our plots are based on the IOU threshold on the metric computation,
by decreasing the IOU threshold, number of True positive increases in both precision and
recall which cause the increase in both of them, in all IOU thresholds our method has the
highest performance.

0

10

20

30

40

50

60

70

80

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

R
ec
al
l

IOU

OURS MaskRCNN Detr

0

10

20

30

40

50

60

70

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re
ci
si
o
n

IOU

OURS MaskRCNN Detr

Figure 1: Both the precision and the recall decrease as we increase the IOU threshold in
Fig5, which is not what a normal precision/recall curve shows, for example in a detection
task. This is because, our plots are based on the IOU threshold on the metric computation,
as opposed to a confidence threshold of a detection in a normal precision/recall curve.

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

6 AUTHOR(S): BMVC AUTHOR GUIDELINES

LDK
Tatami

Corridor
Washroom

Entrance
Door

Closet door
Open door

Balcony
Kitchen

Closet
Toilet

Bedroom
Bathroom

G
iv

en
 C

.P
.

G
iv

en
 C

.P
.

G
iv

en
 C

.P
.

G
iv

en
 C

.P
.

G
iv

en
 C

.P
.

G
iv

en
 C

.P
.

OURSPartial Input Ground TruthOURS*

gr

Figure 2: More qualitative results. Reconstructed floorplans before and after the refinement
for our method by House-GAN++ and several heuristics for more samples. The input partial
reconstructions are derived either by using given Camera Pose in this figure.

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

AUTHOR(S): BMVC AUTHOR GUIDELINES 7

C.3 More qualitative results
Figure 2 shows reconstructed floorplans by our method before and after applying House-
GAN++. and 3 present additional output layout samples by our system and other baselines
before and after applying refinements. In first row we don’t use any refinement, while second
row per sample present first and third rows output after applying refinements and House-
GAN++.

CorridorLDK
Tatami Washroom

Bedroom Closet Balcony Closet door Entrance
DoorOpen doorKitchenToiletBathroom

Partial Input MAT MASK-RCNN DETR OURS Ground Truth

G
iv

en
 C

.P
.

G
iv

en
 C

.P
. *

G
iv

en
 C

.P
.

G
iv

en
 C

.P
. *

Figure 3: More qualitative results. Reconstructed floorplans before and after the refinement
for different baselines and ours by House-GAN++ and several heuristics for more samples.
The same refinement process is used for all the methods. The input partial reconstructions
are derived either by using given Camera Pose in this figure.

References
[1] Liful dataset. https://www.nii.ac.jp/dsc/idr/lifull.

[2] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning
from rgb-d data in indoor environments. arXiv preprint arXiv:1709.06158, 2017.

[3] Steve Cruz, Will Hutchcroft, Yuguang Li, Naji Khosravan, Ivaylo Boyadzhiev, and
Sing Bing Kang. Zillow indoor dataset: Annotated floor plans with 360deg panora-

https://www.nii.ac.jp/dsc/idr/lifull

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

8 AUTHOR(S): BMVC AUTHOR GUIDELINES

mas and 3d room layouts. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2133–2143, June 2021.

[4] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Furukawa. Raster-to-vector: Re-
visiting floorplan transformation. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 2214–2222, 2017. doi: 10.1109/ICCV.2017.241.

[5] Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu, Chin-Yi Cheng,
and Yasutaka Furukawa. House-gan++: Generative adversarial layout refinement net-
work towards intelligent computational agent for professional architects. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13632–13641, 2021.

[6] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, and Ligang Liu.
Data-driven interior plan generation for residential buildings. ACM Transactions on
Graphics (SIGGRAPH Asia), 38(6), 2019.

[7] Jianxiong Xiao, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Recognizing scene
viewpoint using panoramic place representation. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 2695–2702. IEEE, 2012.

[8] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Struc-
tured3d: A large photo-realistic dataset for structured 3d modeling. In Proceedings of
The European Conference on Computer Vision (ECCV), 2020.

