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The supplementary document provides details of the datasets (Appendix A), the full
specifications of our neural architecture (Appendix B), discussion on computational com-
plexity (subsection B.1), details of our loss functions (subsection B.2), additional details
on refinement process (subsection B.3), results under different IOUs (Figure 1), and more
quantitative and qualitative results (Table 5 and Figures 2 and 3).

A Datasets details
SUN360 is a popular indoor panorama dataset [7]. For floorplans, RPLAN provides sixty
thousand synthetic samples in a vector-graphics format [6]. LIFULL HOME’s dataset pro-
vides five million real samples in a raster format [4]. For both panorama images and floor-
plans, Structured3D provides 3,500 synthetic houses/apartments [8]. For real samples, Mat-
terport3D provides 90 houses [2], while their coverage is extremely dense.

ZIND dataset is the closest to ours with 1,500 real houses/apartments, where the panorama
coverage is sparse, and human interventions were required for camera pose estimation and
floorplan reconstruction [3]. Nonetheless, ensuring a panorama(s) is taken in every room
(except stairs and corridors) makes the setup small-scale and highly controlled. Our data
comes from uncontrolled crowd-sourcing, where many rooms are not photographed, posing
fundamental challenges to existing techniques.

In our proposed dataset, the number of panoramas per house ranges from 1 to 7. Specif-
ically, (31, 129, 222, 199, 118, 2) houses contain (1, 2, 3, 4, 5, 7) panoramas, respectively.
The test set contains (9, 19, 15, 7) houses containing (2, 3, 4, 5) panorama images, respec-
tively. The number of invisible rooms varies between 1 and 17. The number of invisible
doors varies between 0 and 11.

As it has been stated in main paper, in order to solve class imbalance problem we use
a weighing constant (w(i)) that is inversely proportional to the number of samples in the
training set, which is (1.135, 3.7, 0.6, 0.63, 0.47, 1.2, 2.2, 0.76, 0.48, 0.18, 0.763, 0.524, 0.33,
0.7, and 0.1) for (living room, kitchen, bedroom, toilet, balcony, corridor, tatami, washroom.
bathroom, closet, closet door, open door, door, entrance, and no-room), respectively. Table 1
present more detail on dataset statistic.

To evaluate the robustness across different datasets, we also used RPLAN [6] datsaset
which is a public dataset. We use Housegan++ [5] data parser to parse RPLAN, which
results in 60K houses; the number of rooms per house varies between 5 to 8. We divide
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Table 1: Dataset statistics. We divide the set into five groups based on the number of rooms
(2-5, 6-9, 10-13, 14-17, 18+). In each group, the table reports (Top) the number of samples;
(Middle) the ave/std of the number of three types of rooms; and (Bottom) the ave/std of the
number of two types of doors.

# of Rooms 2-5 6-9 10-13 14-17 18+
# of Samples 60 243 298 84 16

R
oo

m Visible 2.4/0.9 3.5/1.2 3.7/1.6 3.9/1.5 3.4/1.0
Invis. direct 1.6/0.5 3.7/0.9 5.2/1.6 6.4/2.2 7.2/2.4
Invis. indire. 0.7/0.9 1.4/1.4 3.7/2.2 5.0/2.8 8.2/3.2

D
oo

r Visible 3.0/1.2 7.2/1.6 8.4/2.5 10.6/4.0 11.4/2.3
Invisible 0.8/1.0 1.5/1.7 4.4/3.3 5.9/3.2 9.1/3.5

the dataset into 55K for training and 5K for testing. Using our dataset’s statistics, we flag
the number of rooms per house as invisible. The number of visible rooms per house varies
between 2 to 7, the number of invisible rooms varies between 1 to 6, and the number of
invisible doors varies between 0 to 5.

B Network Architecture

Category Wise CNN takes an input image of the resolution 800×800×14. For the house
with X number of visible rooms, We will have X number of C-wise CNN for rooms category
were the output will be X ×256×25×25, then we apply max function which result output
of that to be 256×25×25. Same will be applied to door and room (both) category. For doors
only category there is no need for max, as we give all doors at same time to one C-wise CNN
block. Then we concatenate them resulting output of all to be 3×256, then we reshape them
to get input sequence for encoder to be 1875×256, let’s refer it as src.

Table 2: Category Wise CNN (C-Wise CNN) block
Layer name/type Specification Output size

Conv1 7×7, 64, stride 2 64×400×400

Conv block2

3×3, maxpool, stride 2

256×200×200
 1×1,64

3×3,64
1×1,256

×3

Conv block3

 1×1,128
3×3,128
1×1,512

×4 512×100×100

Conv block4

 1×1,256
3×3,256
1×1,1024

×6 1024×50×50

Conv block5

 1×1,512
3×3,512
1×1,2048

×3 2048×25×25

Conv6 1×1, 256 256×25×25

Encoder has 6 layers (See Table 3), it receives src, position, and type embedding as input. As



092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

AUTHOR(S): BMVC AUTHOR GUIDELINES 3

Table 3: One layer of encoder, we have 6 layers
Layer name/type input Specification Output size

Multi head attention src embed_dim=256, num_heads=8 1875×256 (src2)
Dropout src2 dropout=0.1 1875×256 (src3)

LayerNorm src3+src normalized_shape=256 1875×256 (src4)
Linear1, ReLU src4 in_features=256, out_features=2048 1875×2048 (src5)

Dropout src5 dropout=0.1 1875×2048 (src6)
Linear2 src6 in_features=2048, out_features=256 1875×256(src7)
Dropout src7 dropout=0.1 1875×256 (src8)

LayerNorm src8+src4 normalized_shape=256 1875×256 (src9)

positional embedding shape is 625×256, we concatenate it by itself three times to produce
1875× 256 positional embedding. Type embedding shape is 3× 256, we concatenate each
embedding related to each category by itself 625 times and concatenate all them together
to produce 1875× 256 type embedding. Encoder input is summation of src and those two
embeddings.

Final output of encoder will be 1875×256. We only use the ones for room-door (both)
category as decoder input which will be 625×256, lets refer this as memory (Mem).

Decoder has three cascaded blocks and 6 layers in each block. Table 4 shows one layer in
one block. Let us assume that we have Y dangling doors. then number of queries for first
decoder will be Y, second will be Y+15 and third will be Y+30. Lets show each cascade input
queries as tgt. The first cascade input is Y dummy queries and encoder output (Mem). Then
first cascade output will be concatenate with 15 dummy queries the result is input queries
for second decoder cascade, second cascade also receives Mem as input. For last cascade,
second cascade output will be concatenate with 15 dummy queries and same as other two
cascades, third cascade also receives Mem too.

Table 4: One layer of decoder, we have 6 layers, Y is number of input queries, in first cascade
it is equal to number of dangling doors, in second it is number of dangling doors+15, and in
third number of dangling doors+30

Layer name/type input Specification Output size
Multi head attention tgt embed_dim=256, num_heads=8 Y ×256 (tgt2)

Dropout tgt2 dropout=0.1 Y ×256 (tgt3)
LayerNorm tgt3+tgt normalized_shape=256 Y ×256 (tgt4)

Multi head attention Mem, tgt embed_dim=256, num_heads=8 Y ×256 (tgt5)
Dropout tgt6 dropout=0.1 Y ×256 (tgt7)

LayerNorm tgt7+tgt4 normalized_shape=256 Y ×256 (tgt8)
Linear1, ReLU tgt8 in_features=256, out_features=2048 Y ×2048 (tgt9)

Dropout tgt9 dropout=0.1 Y ×2048 (tgt10)
Linear2 tgt10 in_features=2048, out_features=256 Y ×256(tgt11)
Dropout tgt11 dropout=0.1 Y ×256 (tgt12)

LayerNorm tgt8+tgt12 normalized_shape=256 Y ×256 (tgt13)

B.1 Computational complexity
The number of network parameters is 50 million ResNet 50. As a reference, the network size
of DETR [3] resp. 40 million. Note that our network size is not very different from other
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standard Transformer based architecture. The reason for choosing a batch size of 1 is not
due to memory constraints, but to accommodate the varying number of visible doors/rooms
per instance during implementation.

B.2 Loss functions
Without loss of generality, we use the second cascade as an example to define loss functions,
where reconstructed invisible room instances are matched against the corresponding ground-
truth. The loss functions consist of the three terms for the room-type classification, the
bounding box parameter regression, and the segmentation mask estimation:

L = Ltype +Lbbox +Lseg, (1)

Ltype =
1

|Iall | ∑
i∈Iall

−w(i)log(pi), (2)

Lbbox =
1

|Imatch| ∑
i∈Imatch

5
∥∥bi − b̂i

∥∥
1 −2 IOU(bi, b̂i), (3)

Lseg =
5

|Imatch| ∑
i∈Imatch

[
Ldice(mi, m̂i)+

1
|P| ∑

p∈P
L f ocal(m

p
i , m̂

p
i )

]
. (4)

Ltype is a standard softmax loss with per-category weighing. Iall is a set of indexes of
all the reconstructed room instances. With abuse of notation, pi denotes the classification
score of the GT room type (i.e., the room type of the matched GT). w(i) denotes a weight
associated with the GT room type to compensate for the imbalance in the training data.
Concretely, the weight is set inversely proportional to the number of samples in the training
set.

Lbbox sums the discrepancies of the bounding box estimation over the matched instances.
The first term is the L1 norm of the 4-dimensional bounding box parameter vector (the cen-
ter, the width, and the height in the normalized image coordinate). bi denotes the estimated
parameter vector and b̂i denotes the corresponding GT vector. The second term is the in-
tersection over the union score between the reconstructed and the ground-truth bounding
boxes.

Lseg sums the discrepancy of the segmentation mask and the matched instance. The first
term is the standard dice loss between the estimated mask (mi) and the GT (m̂i). The second
term is the average focal loss of the per-pixel mask value. P denotes the set of pixels in the
domain. mp

i (resp. m̂p
i ) denotes the estimated (resp. GT) per-pixel mask value.

B.3 Final floorplan refinement
Here we give a few more details on our refinement process. RPLAN dataset [6] was initially
used to train House-GAN++ but is synthetic and may exhibit incompatible database bias.
We use LIFULL HOME’S dataset [1] instead. Since the goal is the refinement without
overall arrangement changes, we use fully-connected graphs for training and testing. The
reconstructed floorplan from our cascading decoder is specified as the input constraint. In the
first iteration, we give our last cascade output as inputs mask to Housegan++. The predicted
mask of the previous iteration will be input for each node from the second iteration, and we
continue this to the 10th iteration. By doing this, as we are limiting Housegan++, masks only
get refined and curvy edges will change to manhattan shapes.
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C Additional Experimental Results

C.1 LPIPS and FID Results

As discussed in the main paper, FID and LPIPS are not as powerful metrics as much as our
main metric to show if our method is successful in our unique task however we show them
here for the reference.

Table 5: FID and LPIPS results. We compare against MAT, Mask-RCNN (Mrcnn), House-
GAN++, and DETR with ResNet-50 backbone. Input partial floorplans are ground-truth.

Method ↓ FID ↓ LPIPS
MAT 80.9 0.245
Mrcnn 76.0 0.241
House-GAN++ 45.6 0.220
DETR 79.1 0.243
Ours 76.8 0.242
Our* 42.4 0.214

C.2 Additional results on different IOU-thresholds

In Figure 1 we are providing recall and precision graph for different IOUs starting from 0
going up to 1, increasing by 0.1. Both the precision and the recall decrease as we increase
the IOU threshold. As our plots are based on the IOU threshold on the metric computation,
by decreasing the IOU threshold, number of True positive increases in both precision and
recall which cause the increase in both of them, in all IOU thresholds our method has the
highest performance.
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Figure 1: Both the precision and the recall decrease as we increase the IOU threshold in
Fig5, which is not what a normal precision/recall curve shows, for example in a detection
task. This is because, our plots are based on the IOU threshold on the metric computation,
as opposed to a confidence threshold of a detection in a normal precision/recall curve.
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Figure 2: More qualitative results. Reconstructed floorplans before and after the refinement
for our method by House-GAN++ and several heuristics for more samples. The input partial
reconstructions are derived either by using given Camera Pose in this figure.
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C.3 More qualitative results
Figure 2 shows reconstructed floorplans by our method before and after applying House-
GAN++. and 3 present additional output layout samples by our system and other baselines
before and after applying refinements. In first row we don’t use any refinement, while second
row per sample present first and third rows output after applying refinements and House-
GAN++.
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DoorOpen doorKitchenToiletBathroom

Partial Input MAT MASK-RCNN DETR OURS Ground Truth
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Figure 3: More qualitative results. Reconstructed floorplans before and after the refinement
for different baselines and ours by House-GAN++ and several heuristics for more samples.
The same refinement process is used for all the methods. The input partial reconstructions
are derived either by using given Camera Pose in this figure.
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