Roadmap. The appendix is organized as follows. Detailed experimental setup are described in Section A. We further provide more experimental results in Section B.

A Detailed Experimental Setup

Our method is implemented based Detectron2 [13]. All the experiments are run on 8 V100 GPUs. The overall algorithm is given in Algorithm 1.

Transferred Datasets. Pascal VOC is a combination of VOC2007 and VOC2012 datasets with 20 object categories. This dataset contains 5k images for test. COCO 2017 is a classical benchmark dataset consisting of 80 object categories. It contains 5k images for validation. Objects365 v2 is a object detection dataset with 365 diverse object classes in the wild. It contains 30k images for validation.

Meta Prompt Learning. The context vectors for foreground and background are both randomly initialized from a Gaussian distribution with 0 mean and 0.02 standard deviation. And the length of context vectors for foreground and background are set as 8 and 10, respectively. The subset T_s contains 650 sampled base classes by default. We use jit version CLIP as vision-language model [10] during meta prompt representation learning. Following DetPro [2], we use 10% background proposals and ground-truth foreground proposals are included in the positive proposals for training. The word embedding for every class is integrated in the end of the learned foreground prompt representation. The dimension of context vector and word embedding are both 512. As demonstrated in DetPro, different positive proposals for the same object can be various, which results in different contexts. Such difference can be understood as follows: (a) given the ground-truth bounding box of an object, the prompt should be ‘a photo of’; (b) given a proposal with partial object, the prompt should be ‘a photo of partial’. Obviously, the learned prompt representation should be capable to represent these two different templates. So we train the prompt representation with different level contexts and ensemble the learned prompt representation. The positive proposals are divided into 5 levels by IoU range from 0.5 to 1.0 with step size 0.1. We train the prompt representation for every single level with L_p in Eq. (1) and L_n in Eq. (5). The temperature τ in Eq. (3) and Eq. (4) is set as 0.01. SGD is used for optimizing the context vectors. The learning rate is 0.002 and decayed by a step-wise scheduler, trained for 6 epochs with a batch size 512.

Open-Vocabulary Detector. We use ResNet50 [6] as the backbone and FPN [7] architecture. The default size M of memory bank for each class is 256 and sampling size m is 16. The threshold for selecting proposals U_p and U_n are 0.7 and 0.01, respectively. The temperature γ in Eq. (6) is set as 0.1 and the weight α of L_{icl} is initialized as 0.1 and gradually decayed during the detector training to help the convergence of other losses. Following Detic [16], we use CenterNet2 [15] with a ResNet50 backbone [6] and FPN [7] architecture. The mask prediction head is modified to a class-agnostic one and federated loss [15] is used for training. Repeat factor sampling [5] is used to balance long-tailed distributed classes. Note that CenterNet2 uses a cascade classifier [1]. The backbone ResNet50 is initialized with the pretrained weights on ImageNet21k [11]. In ICL, the projection network is a 2-layer MLP with two linear-relu layers and a normalization layer, and the dimension of proposal feature is projected from 1024 to 128. To improve the diversity of proposal samples in the instance memory bank, we gather and concat all proposal samples from 8 GPUS before updating the instance memory bank. We use AdamW [9] as the optimizer with an initial learning rate 0.0002 and batch size 64. We use EfficientDet style large scale jittering [3, 4]. To accelerate training, the input images are cropped to 640×640 while 800×1333 for inference. The
Algorithm 1 MIC for Open-Vocabulary Object Detection

Input: fg prompt \mathbf{V}_f, bg prompt \mathbf{V}_b, base classes \mathcal{C}_B, prompt update steps K and learning rate η_k, detector θ, training image I with its bbox and class label (b,c), detector training steps R and learning rate η_r, hyper-parameter α

Output: trained detector θ

1. We start with **procedure A** to learn fg and bg prompts, then the learned prompts are used in **procedure B**.
2. **procedure A. Meta Prompt Learning**

 for $k = 1 \rightarrow K$ do

 Sample a batch of precomputed proposals from \mathcal{C}_B

 Forward proposals into CLIP to obtain f_p, f_n

 $T_B = \{E_T(\mathbf{V}_i)\}_{i \in \mathcal{C}_B}, t_{bg} = E_T(\mathbf{V}_{bg})$

 Sample T_S from T_B \textgreater Meta sampling

 Compute p^p_c by Eq. (3), and p^n_c by Eq. (4)

 $L_p = -\log p^p_c$ \textgreater Eq. (1)

 $L_n = -\frac{1}{|\mathcal{C}_S|} \sum_{c \in \mathcal{C}_S} \log p^n_c$ \textgreater Eq. (5)

 $V_f \leftarrow V_f - \eta_k \cdot \nabla L_p$ \textgreater Update fg prompt

 $V_b \leftarrow V_b - \eta_k \cdot \nabla L_n$ \textgreater Update bg prompt

 end for

3. **procedure B. Detector Training**

 for $r = 1 \rightarrow R$ do

 Sample a batch of data $(I, (b,c))$ from \mathcal{C}_B

 Feed I into detector to obtain f and proposal IoU

 Filter fg proposal by U_p and bg proposal by U_n

 Update instance memory bank Q

 Calculate contrastive loss L_{icl} by Eq. (6)

 $\mathcal{L}_{det} = \mathcal{L}_{rp} + \mathcal{L}_{cls} + \mathcal{L}_{reg} + \alpha \mathcal{L}_{icl}$

 $\theta \leftarrow \theta - \eta_r \cdot \nabla \mathcal{L}_{det}$ \textgreater Update detector θ

 end for

4. end procedure

detector is trained for a $4 \times$ schedule with 90000 iterations. We perform 10000 warmup steps with 0.0001 warmup factor and use cosine learning schedule [8]. To help the convergence of other losses, the weight α of instance-level contrastive loss L_{icl} is decayed along with the training process by $\alpha = \alpha \times (1 - \text{iter}/90000)$.

B More Experimental Results

In this section, we show more experimental results, including the comparison of training time, visualization of latent space embedding and detection, which further indicates the effectiveness and robustness of our proposed method.

Training Time. We compare the training time of our proposed MIC with previous SOTA two-stage methods, including DetPro [8], RegionCLIP [14], PromptDet [3], as shown in Table 1. Our MIC is shown to be more efficient than previous two-stage methods.
Table 1: The training time comparison of our method with previous SOTA two-stage methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>RegionCLIP</th>
<th>DetPro</th>
<th>PromptDet</th>
<th>MIC (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time (GPU hours)</td>
<td>1064</td>
<td>464</td>
<td>408</td>
<td>368</td>
</tr>
</tbody>
</table>

Figure 1: **t-SNE visualization of class embeddings of transferred datasets.** We use t-SNE to visualize the class embeddings of Pascal VOC, COCO, and Objects365 generated from DetPro and our proposed MPL.

Latent Space Embedding. We also use t-SNE to visualize the class embeddings of Pascal VOC, COCO, and Objects365 generated from DetPro and our proposed MPL. From Figure 1, we can draw the same conclusion as LVIS. Under our proposed MPL scheme, the learned prompt representations are more discriminative in the latent space.

Study of Failure Cases. Although we use meta prompt and instance contrastive learning to improve the discriminative ability of our model, it still suffers from distinguishing some extremely similar classes, such as ‘duck’ and ‘duckling’, and ‘panda’ and ‘bear’ shown in Figure 2. To better distinguish these categories, we might include outside knowledge base of fine-grained categories in the future work.

Figure 2: Failure cases of MIC.

More Comparisons of Detection Results. We show more detection visualization results in Figure 3, which further indicates the robustness of our proposed method.
Figure 3: More qualitative detection visualization results of our proposed method MIC and DetPro. Our method could better distinguish similar classes, detect smaller objects, and produce less false positives under diverse scenes.
References

