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We propose a novel visual‐language model called DFER‐CLIP, based on the
CLIP model and designed for in‐the‐wild Dynamic Facial Expression Recog‐
nition (DFER). The DFER‐CLIP:

Temporal feature learning: learns spatial as well as temporal facial
expression features by re‐fining a CLIP image‐encoder and training a
temporal model.
Text description: trains in a supervised manner with text descriptions,
capturing facial behaviour, instead of class name.
Learnable context: with a learnable prompt for descriptors of each class
to learn relevant context information for each expression during training.
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Visual part: the frame‐level features are first learnt by a shared CLIP visual
encoder. Then all of the frame‐level features along with an additional
learnable class token will feed into the temporal model, in which the
learnable position embedding is added to encode the temporal position.
Textual part: we utilize descriptions related to facial behaviour instead of
class names for the text encoder. Furthermore, we adopt the learnable
prompt as a context for descriptors of each class, which does not require
experts to design context words and allows the model to learn relevant
context information for each expression during training.

LLM-based Descriptions Building

The CLIP text encoder learns semantic information from natural language
text, we propose taking the facial action description as the input for the
text encoder.
We prompt a large language model such as ChatGPT to automatically
generate descriptions based on contextual information, instead of
manually designing.
We prompt the language model with the input:
Q: What are useful visual features for the facial expression of {class name}?
A: Some useful visual features for facial expressions of {class name} include: ...

Comparison with SOTA

Methods DFEW FERV39k MAFW

UAR WAR UAR WAR UAR WAR

Former‐DFER [1] [MM’21] 53.69 65.70 37.20 46.85 31.16 43.27
DPCNet [2] [MM’22] 57.11 66.32 ‐ ‐ ‐ ‐
T‐ESFL [3] [MM’22] ‐ ‐ ‐ ‐ 33.28 48.18
EST [4] [PR’23] 53.94 65.85 ‐ ‐ ‐ ‐
IAL [5] [AAAI’23] 55.71 69.24 35.82 48.54 ‐ ‐

CLIPER [6] [arXiv’23] 57.56 70.84 41.23 51.34 ‐ ‐
M3DFEL [7] [CVPR’23] 56.10 69.25 35.94 47.67 ‐ ‐
AEN [8] [CVPRW’23] 56.66 69.37 38.18 47.88 ‐ ‐

DFER‐CLIP (Ours) 59.61 71.25 41.27 51.65 39.89 52.55

Ablation Analysis

Table 1. Evaluation of the learnable context prompt numbers & the temporal model depths.

Number of the
Context Prompts

Depth of the
Temporal Model

DFEW FERV39k MAFW

UAR WAR UAR WAR UAR WAR

4 % 56.91 69.01 40.26 50.96 38.03 50.62
8 % 57.39 69.00 40.64 50.92 38.51 50.91
16 % 57.32 68.96 40.22 50.64 37.98 50.40

8 1 59.61 71.25 41.27 51.65 39.89 52.55
8 2 58.87 70.92 40.41 51.08 39.13 52.10
8 3 58.64 70.80 40.35 50.98 38.90 51.86

• By adopting the temporal model, the UAR performance can be improved by 2.22%, and
1.38%, and WAR performance can be improved by 2.25%, 0.73%, and 1.64% on DFER,
FERV39k, and MAFW datasets, respectively.

Table 2. Evaluation of different training strategies. TM stands for the temporal model.

Strategies DFEW FERV39k MAFW

UAR WAR UAR WAR UAR WAR

Classifier‐based
Linear Probe 45.46 57.40 32.47 43.72 30.74 42.95

Fully Fine‐Tuning (w/o TM) 55.70 68.41 39.64 50.77 37.53 50.48
Fully Fine‐Tuning (w/ TM) 58.28 70.27 40.55 51.22 38.39 50.92

Text‐based
(Classifier‐free)

Zero‐shot CLIP 23.34 20.07 20.99 17.09 18.42 19.16
Zero‐shot FaRL 23.14 31.54 21.67 25.65 14.18 11.78

CoOp 44.98 56.68 31.72 42.55 30.79 42.77
Co‐CoOp 46.80 57.52 32.91 44.25 30.81 43.23

DFER‐CLIP (w/o TM) (Ours) 57.39 69.00 40.64 50.92 38.51 50.91
DFER‐CLIP (w TM) (Ours) 59.61 71.25 41.27 51.65 39.89 52.55

• Our method outperforms Fully Fine‐tuning in UAR by 3.91%, 1.63%, and 2.36%, and in
WAR by 2.84%, 0.88%, and 2.07% on DFER, FERV39k, and MAFW datasets, respectively.
Even without the temporal model, our method is better than all the classifier‐based methods.

Table 3. Evaluation of different prompts.

Prompts DFEW FERV39k MAFW

UAR WAR UAR WAR UAR WAR

w/o
TM

a photo of [Class] 56.21 68.44 39.44 49.94 37.91 50.87
an expression of [Class] 56.16 68.73 39.28 50.41 37.71 51.08
[Learnable Prompt] [Class] 57.37 68.86 40.42 50.50 38.01 50.81

[Learnable Prompt] [Descriptors] 57.39 69.00 40.64 50.92 38.51 50.91

w/
TM

[Learnable Prompt] [Class] 58.28 70.29 40.60 51.18 39.64 51.21
[Learnable Prompt] [Descriptors] 59.61 71.25 41.27 51.65 39.89 52.55

• Our method outperforms manually designed prompts on both DFEW and FERV39k
datasets. Furthermore, our method outperforms the prompt of the class name with the learn‐
able context approach, which indicates the effectiveness of using descriptions.
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Code is available at https://github.com/zengqunzhao/DFER-CLIP Feel free to contact us {zengqun.zhao,i.patras}@qmul.ac.uk
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